9£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{2}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼¶Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=4\sqrt{2}$£»
£¨I£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1Éϵ͝µã£¬ÇóµãPµ½ÇúÏßC2ÉϵľàÀëµÄ×îСֵµÄÖµ£®

·ÖÎö £¨¢ñ£©ÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦Á£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÕ¹¿ª¿ÉµÃ¦Ñsin¦È+¦Ñcos¦È=8£¬ÓÉ´ËÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÉèÍÖÔ²ÉϵĵãP£¨$\sqrt{2}cos¦Á£¬sin¦Á$£©£¬ÀûÓõãPµ½Ö±ÏߵľàÀ빫ʽ¼°Èý½Çº¯ÊýÐÔÖÊÄÜÇó³öµãPµ½ÇúÏßC2ÉϵľàÀëµÄ×îСֵ£®

½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{2}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊý¦Á£¬µÃÇúÏßC1µÄÆÕͨ·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³Ì$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=4\sqrt{2}$£¬
Õ¹¿ª¿ÉµÃ£º$¦Ñ¡Á\frac{\sqrt{2}}{2}$£¨sin¦È+cos¦È£©=4$\sqrt{2}$£¬¼´¦Ñsin¦È+¦Ñcos¦È=8£®
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ£ºx+y=8£®¡­£¨5·Ö£©
£¨¢ò£©¡ßPΪÇúÏßC1Éϵ͝µã£¬¡àÉèÍÖÔ²ÉϵĵãP£¨$\sqrt{2}cos¦Á£¬sin¦Á$£©£¬
µãPµ½Ö±ÏßOµÄ¾àÀëΪd=$\frac{|\sqrt{2}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|\sqrt{3}sin£¨¦Á+¦È£©-8|}{\sqrt{2}}$£¬
¡àµ±sin£¨¦Á+¦È£©=1ʱ£¬µãPµ½ÇúÏßC2ÉϵľàÀëµÄ×îСֵΪdmin=$\frac{8\sqrt{2}-\sqrt{6}}{2}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÇúÏߵįÕͨ·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éµãµ½ÇúÏߵľàÀëµÄ×îСֵµÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢µãµ½Ö±ÏߵľàÀ빫ʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éº¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ̽¾¿ÏµÊýÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµÊ±£¬¿É°´ÏÂÊö·½·¨½øÐУºÉèʵϵÊýÒ»Ôª¶þ´Î·½³Ìa2x2+a1x+a0=0¡­¢Ù
ÔÚ¸´Êý¼¯CÄڵĸùΪx1£¬x2£¬Ôò·½³Ì¢Ù¿É±äÐÎΪa2£¨x-x1£©£¨x-x2£©=0£¬Õ¹¿ªµÃa1x2-a2£¨x1+x2£©x+a2x1x2=0£¬¡­¢Ú±È½Ï¢Ù¢Ú¿ÉÒԵõ½£º$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-\frac{{a}_{1}}{{a}_{2}}}\\{{x}_{1}{x}_{2}=\frac{{a}_{0}}{{a}_{2}}}\end{array}\right.$Àà±ÈÉÏÊö·½·¨£¬ÉèʵϵÊýÒ»Ôªn´Î·½³Ìanxn+an-1xn-1+¡­+a1x+a0=0£¨n¡Ý2ÇÒn¡ÊN*£©ÔÚ¸´Êý¼¯CÄڵĸùΪx1£¬x2£¬¡­£¬xn£¬ÔòÕân¸ö¸ùµÄ»ý$\underset{\stackrel{n}{¦°}}{i=1}$xi=${£¨-1£©}^{n}\frac{{a}_{0}}{{a}_{n}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÇëÔĶÁÏÂÁÐÓÃForÓï¾äд³öµÄËã·¨£¬¸ÃËã·¨µÄ´¦Àí¹¦ÄÜÊÇ£¨¡¡¡¡£©
A£®S=19+20£»T=19¡Á20B£®S=19¡Á20£»T=19+20
C£®S=1¡Á2¡Á3¡Á¡­¡Á20£»  T=1+2+3+¡­+20D£®S=1+2+3+¡­+20£» T=1¡Á2¡Á3¡Á¡­¡Á20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èôº¯Êýy=f£¨x+1£©µÄͼÏóÓ뺯Êý$y=ln\sqrt{x}+1$µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Ôòf£¨x£©=£¨¡¡¡¡£©
A£®e2xB£®e2x-1C£®e2x-2D£®e2x-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª$sin¦Á=-\frac{{\sqrt{3}}}{2}$£¬Çócos¦Á¡¢tan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èç¹ûÔ²x2+y2-4x+2y+c=0ÓëyÖá½»ÓÚA£¬BÁ½µã£¬Ô²ÐÄΪP£¬ÇÒ¡ÏAPB=120¡ã£¬ÄÇôÅ×ÎïÏßy2=4cxµÄ½¹µã×ø±êΪ£¨-11£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÉèµÈ²îÊýÁÐ{an}£¬ËüµÄǰ5ÏîµÄºÍΪ34£¬×îºó5ÏîµÄºÍΪ146£¬ËùÓÐÏîµÄºÍΪ234£¬Ôòa7=£¨¡¡¡¡£©
A£®2B£®8C£®16D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÔòËüµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®$7+\sqrt{5}$C£®$5+\sqrt{5}$D£®$7+2\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ£¬A¡¢B·Ö±ðÊÇË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$Á½½¥½üÏßÉϵĵ㣬A¡¢BÔÚyÖáÉϵÄÉäÓ°·Ö±ðΪA1¡¢B1£¬M¡¢N·Ö±ðÊÇA1A¡¢B1B¡¢µÄÖе㣬ÈôABÖеãÔÚË«ÇúÏßÉÏ£¬ÇÒ$\overrightarrow{OM}•\overrightarrow{ON}¡Ý-{a^2}$£¬ÔòË«ÇúÏßµÄÀëÐÄÂʵÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨{1£¬\frac{3}{2}}]$B£®$[\frac{3}{2}£¬+¡Þ£©$C£®$£¨1£¬\frac{{\sqrt{5}}}{2}]$D£®$[\frac{{\sqrt{5}}}{2}£¬+¡Þ£©$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸