分析 先把圆方程整理成标准方程,求得圆心坐标,过圆心作PP′⊥y轴,垂足为P′,则P′坐标可知,根据∠APB=120°推断出∠APP′=60°进而再Rt△APP′中求得PA即圆的半径,进而与圆标准方程中的半径相等求得c.如何求解抛物线的焦点坐标.
解答 解:过圆心作PP′⊥y轴,垂足为P′,
则P′(0,-1),∠APP′=60°,|PP′|=2,
所以圆半径|PA|=4,由圆的标准方程,(x-2)2+(y+1)2=5-c
∴5-c=16,求得c=-11,
抛物线方程为:y2=-44x,抛物线的焦点坐标:(-11,0).
故答案为:(-11,0).
点评 本题主要考查抛物线的简单性质,圆的方程的综合运用.考查了学生数形结合的思想的运用和基本的运算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±2$\sqrt{2}$ | B. | ±3 | C. | ±4 | D. | ±2$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com