ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬Èôy=
f(x)
x
ÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬Ôò³Æf£¨x£©Îª¡°Ò»½×±ÈÔöº¯Êý¡±£»Èôy=
f(x)
x2
ÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬Ôò³Æf£¨x£©Îª¡°¶þ½×±ÈÔöº¯Êý¡±£®ÎÒÃÇ°ÑËùÓС°Ò»½×±ÈÔöº¯Êý¡±×é³ÉµÄ¼¯ºÏ¼ÇΪ¦¸1£¬ËùÓС°¶þ½×±ÈÔöº¯Êý¡±×é³ÉµÄ¼¯ºÏ¼ÇΪ¦¸2£®
£¨¢ñ£©ÒÑÖªº¯Êýf£¨x£©=x3-2hx2-hx£¬Èôf£¨x£©¡Ê¦¸1£¬ÇÒf£¨x£©∉¦¸2£¬ÇóʵÊýhµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©ÒÑÖª0£¼a£¼b£¼c£¬f£¨x£©¡Ê¦¸1ÇÒf£¨x£©µÄ²¿·Öº¯ÊýÖµÓÉϱí¸ø³ö£¬
x a b c a+b+c
f£¨x£© d d t 4
ÇóÖ¤£ºd£¨2d+t-4£©£¾0£»
£¨¢ó£©¶¨Ò弯ºÏ¦µ={f£¨x£©|f£¨x£©¡Ê¦¸2£¬ÇÒ´æÔÚ³£Êýk£¬Ê¹µÃÈÎÈ¡x¡Ê£¨0£¬+¡Þ£©£¬f£¨x£©£¼k}£¬ÇëÎÊ£ºÊÇ·ñ´æÔÚ³£ÊýM£¬Ê¹µÃ?f£¨x£©¡Ê¦µ£¬?x¡Ê£¨0£¬+¡Þ£©£¬ÓÐf£¨x£©£¼M³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨I£©ÒòΪf£¨x£©¡Ê¦¸1£¬ÇÒf£¨x£©∉¦¸2£¬
¼´g£¨x£©=
f(x)
x
=x2-2hx-h£¬ÔÚ£¨0£¬+¡Þ£©ÊÇÔöº¯Êý£¬ËùÒÔh¡Ü0  ¡­£¨2·Ö£©
¶øh£¨x£©=
f(x)
x2
=x-2h-
h
x
ÔÚ£¨0£¬+¡Þ£©²»ÊÇÔöº¯Êý£¬
ÓÖ¡ßh¡ä£¨x£©=1+
h
x2
£¬ÇÒ
µ±h£¨x£©ÊÇÔöº¯Êýʱ£¬ÓÐh¡Ý0£¬ËùÒÔµ±h£¨x£©²»ÊÇÔöº¯Êýʱ£¬h£¼0
×ÛÉÏ£¬µÃh£¼0                          ¡­£¨4·Ö£©
Ö¤Ã÷£º£¨¢ò£© ÒòΪf£¨x£©¡Ê¦¸1£¬ÇÒ0£¼a£¼b£¼c£¼a+b+c£¬
ËùÒÔ
f(a)
a
£¼
f(a+b+c)
a+b+c
=
4
a+b+c
£¬ËùÒÔf£¨a£©=d£¼
4a
a+b+c
£¬
ͬÀí¿ÉÖ¤f£¨b£©=d£¼
4b
a+b+c
£¬f£¨c£©=t£¼
4c
a+b+c

ÈýʽÏà¼ÓµÃf£¨a£©+f£¨b£©+f£¨c£©=2d+t£¼
4(a+b+c)
a+b+c
=4
ËùÒÔ2d+t-4£¼0                        ¡­£¨6·Ö£©
ÒòΪ
d
a
£¼
d
b
£¬ËùÒÔd£¨
b-a
ab
£©£¼0
¶ø0£¼a£¼b£¬ËùÒÔd£¼0
ËùÒÔd£¨2d+t-4£©£¾0                                ¡­£¨8·Ö£©
£¨¢ó£© ÒòΪ¼¯ºÏ¦µ={f£¨x£©|f£¨x£©¡Ê¦¸2£¬ÇÒ´æÔÚ³£Êýk£¬Ê¹µÃÈÎÈ¡x¡Ê£¨0£¬+¡Þ£©£¬f£¨x£©£¼k}£¬
ËùÒÔ?f£¨x£©¡Ê¦µ£¬´æÔÚ³£Êýk£¬Ê¹µÃ f£¨x£©£¼k ¶Ôx¡Ê£¨0£¬+¡Þ£©³ÉÁ¢
ÎÒÃÇÏÈÖ¤Ã÷f£¨x£©¡Ü0¶Ôx¡Ê£¨0£¬+¡Þ£©³ÉÁ¢
¼ÙÉè?x0¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃf£¨x0£©£¾0£¬
¼Ç
f(x0)
x02
=m£¾0
ÒòΪf£¨x£©ÊǶþ½×±ÈÔöº¯Êý£¬¼´
f(x)
x2
ÊÇÔöº¯Êý£®
ËùÒÔµ±x£¾x0ʱ£¬
f(x)
x2
£¾
f(x0)
x02
=m£¬ËùÒÔf£¨x£©£¾mx2
ËùÒÔÒ»¶¨¿ÉÒÔÕÒµ½Ò»¸öx1£¾x0£¬Ê¹µÃf£¨x1£©£¾mx12£¾k
ÕâÓëf£¨x£©£¼k ¶Ôx¡Ê£¨0£¬+¡Þ£©³ÉÁ¢Ã¬¶Ü                 ¡­£¨11·Ö£©
¼´f£¨x£©¡Ü0¶Ôx¡Ê£¨0£¬+¡Þ£©³ÉÁ¢
ËùÒÔ?f£¨x£©¡Ê¦µ£¬f£¨x£©¡Ü0¶Ôx¡Ê£¨0£¬+¡Þ£©³ÉÁ¢
ÏÂÃæÎÒÃÇÖ¤Ã÷f£¨x£©=0ÔÚ£¨0£¬+¡Þ£©ÉÏÎÞ½â
¼ÙÉè´æÔÚx2£¾0£¬Ê¹µÃf£¨x2£©=0£¬
ÔòÒòΪf£¨x£©ÊǶþ½×Ôöº¯Êý£¬¼´
f(x)
x2
ÊÇÔöº¯Êý
Ò»¶¨´æÔÚx3£¾x2£¾0£¬Ê¹
f(x3)
x32
£¾
f(x2)
x22
=0£¬ÕâÓëÉÏÃæÖ¤Ã÷µÄ½á¹ûì¶Ü
ËùÒÔf£¨x£©=0ÔÚ£¨0£¬+¡Þ£©ÉÏÎÞ½â
×ÛÉÏ£¬ÎÒÃǵõ½?f£¨x£©¡Ê¦µ£¬f£¨x£©£¼0¶Ôx¡Ê£¨0£¬+¡Þ£©³ÉÁ¢
ËùÒÔ´æÔÚ³£ÊýM¡Ý0£¬Ê¹µÃ?f£¨x£©¡Ê¦µ£¬?x¡Ê£¨0£¬+¡Þ£©£¬ÓÐf£¨x£©£¼M³ÉÁ¢
ÓÖÁîf£¨x£©=-
1
x
£¨x£¾0£©£¬Ôòf£¨x£©£¼0¶Ôx¡Ê£¨0£¬+¡Þ£©³ÉÁ¢£¬
ÓÖÓÐ
f(x)
x2
=
-1
x3
ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ËùÒÔf£¨x£©¡Ê¦µ£¬
¶øÈÎÈ¡³£Êýk£¼0£¬×Ü¿ÉÒÔÕÒµ½Ò»¸öxn£¾0£¬Ê¹µÃx£¾xnʱ£¬ÓÐÓÐf£¨x£©£¾k
ËùÒÔMµÄ×îСֵ Îª0       ¡­£¨16·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=log3
3
x
1-x
£¬M(x1£¬y1)£¬N(x2£¬y2)
ÊÇf£¨x£©Í¼ÏóÉϵÄÁ½µã£¬ºá×ø±êΪ
1
2
µÄµãPÂú×ã2
OP
=
OM
+
ON
£¨OΪ×ø±êÔ­µã£©£®
£¨¢ñ£©ÇóÖ¤£ºy1+y2Ϊ¶¨Öµ£»
£¨¢ò£©ÈôSn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£»
£¨¢ó£©ÒÑÖªan=
1
6
£¬                          n=1
1
4(Sn+1)(Sn+1+1)
£¬n¡Ý2
£¬ÆäÖÐn¡ÊN*£¬TnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôTn£¼m£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐ˵·¨ÕýÈ·µÄÓУ¨¡¡¡¡£©¸ö£®
¢ÙÒÑÖªº¯Êýf£¨x£©ÔÚ£¨a£¬b£©Äڿɵ¼£¬Èôf£¨x£©ÔÚ£¨a£¬b£©ÄÚµ¥µ÷µÝÔö£¬Ôò¶ÔÈÎÒâµÄ?x¡Ê£¨a£¬b£©£¬ÓÐf¡ä£¨x£©£¾0£®
¢Úº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£¬Ôòº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£»·´Ö®Èôº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£¬Ôòº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£®
¢ÛÒòΪ3£¾2£¬ËùÒÔ3+i£¾2+i£¬ÆäÖÐiΪÐéÊýµ¥Î»£®
¢Ü¶¨»ý·Ö¶¨Òå¿ÉÒÔ·ÖΪ£º·Ö¸î¡¢½üËÆ´úÌæ¡¢ÇóºÍ¡¢È¡¼«ÏÞËIJ½£¬¶ÔÇóºÍIn=
n
i=1
f(¦Îi)¡÷x
ÖЦÎiµÄÑ¡È¡ÊÇÈÎÒâµÄ£¬ÇÒIn½öÓÚnÓйأ®
¢ÝÒÑÖª2i-3ÊÇ·½³Ì2x2+px+q=0µÄÒ»¸ö¸ù£¬ÔòʵÊýp£¬qµÄÖµ·Ö±ðÊÇ12£¬26£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sin£¨2x-
¦Ð
6
£©£¬g£¨x£©=sin£¨2x+
¦Ð
3
£©£¬Ö±Ïßy=mÓëÁ½¸öÏàÁÚº¯ÊýµÄ½»µãΪA£¬B£¬Èôm±ä»¯Ê±£¬ABµÄ³¤¶ÈÊÇÒ»¸ö¶¨Öµ£¬ÔòABµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¢ñ£©ÒÑÖªº¯Êýf£¨x£©=x3-x£¬ÆäͼÏó¼ÇΪÇúÏßC£®
£¨i£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨ii£©Ö¤Ã÷£ºÈô¶ÔÓÚÈÎÒâ·ÇÁãʵÊýx1£¬ÇúÏßCÓëÆäÔÚµãP1£¨x1£¬f£¨x1£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP2£¨x2£¬f£¨x2£©£©£¬ÇúÏßCÓëÆäÔÚµãP2£¨x2£¬f£¨x2£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP3£¨x3£¬f£¨x3£©£©£¬Ï߶ÎP1P2£¬P2P3ÓëÇúÏßCËùΧ³É·â±ÕͼÐεÄÃæ»ý¼ÇΪS1£¬S2£®Ôò
S1S2
Ϊ¶¨Öµ£»
£¨¢ò£©¶ÔÓÚÒ»°ãµÄÈý´Îº¯Êýg£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬Çë¸ø³öÀàËÆÓÚ£¨¢ñ£©£¨ii£©µÄÕýÈ·ÃüÌ⣬²¢ÓèÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3-ax+b´æÔÚ¼«Öµµã£®
£¨1£©ÇóaµÄÈ¡Öµ·¶Î§£»
£¨2£©¹ýÇúÏßy=f£¨x£©ÍâµÄµãP£¨1£¬0£©×÷ÇúÏßy=f£¨x£©µÄÇÐÏߣ¬Ëù×÷ÇÐÏßÇ¡ÓÐÁ½Ìõ£¬Çеã·Ö±ðΪA¡¢B£®
£¨¢¡£©Ö¤Ã÷£ºa=b£»
£¨¢¢£©ÇëÎÊ¡÷PABµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó´Ë¶¨Öµ£»Èô²»ÊÇÇó³öÃæ»ýµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸