精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax3+
1
2
x2-2x,x>0
xex,x≤0
在点A(1,f(1))处的切线l的斜率为零.
(Ⅰ)求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若对任意的x1,x2∈[m,m+3],不等式|f(x1)-f(x2)|≤
45
2
恒成立,这样的m是否存在?若存在,请求出m的取值范围;若不存在,请说明理由.
(Ⅰ)由题意当x>0时,f'(x)=3ax2+x-2,且f'(1)=0,
∴3a+1-2=0,解得a=
1
3

(Ⅱ)由(Ⅰ)知,f(x)=
1
3
x3+
1
2
x2-2x,x>0
xex,x≤0
                                             
当x>0时,f'(x)=x2+x-2=(x+2)(x-1),
∴x∈[0,1)时,f'(x)<0;x∈(1,+∞)时f'(x)>0.                            
当x≤0时,f'(x)=xex+ex=(x+1)ex
∴x∈(-∞,-1)时f'(x)<0;x∈(-1,0)时f'(x)>0.                           
∴f(x)在(-1,0),(1,+∞)上单调递增;
在[0,1),(-∞,-1)上单调递减.                                                
(Ⅲ)由(Ⅱ)知,①当m>1时,f(x)在[m,m+3]上递增,
故fmax(x)=f(m+3),fmin(x)=f(m),
f(m+3)-f(m)=
1
3
(m+3)3+
1
2
(m+3)2-2(m+3)-(
1
3
m3+
1
2
m2-2m)

=(m+3)[
1
3
(m+3)2+
1
2
(m+3)-2]-
1
3
m3-
1
2
m2+2m

=3m2+12m+
15
2
=3(m+2)2-
9
2

∵m>1,∴3(m+2)2-
9
2
>27-
9
2
45
2

f(m+3)-f(m)>
45
2
,此时m不存在,
②当0<m≤1时,f(x)在[m,1]上递减,在[1,m+3]上递增,
fmin(x)=f(1)=-
7
6

|f(x1)-f(x2)|≤f(4)-f(1)=
64
3
+
7
6
=
45
2

∴0<m≤1时,符合题意.                                                          
③当m≤0时,m+3≤3,
fmax(x)<f(3)=
15
2
.0≤x<3时,f(x)≥f(1)=-
7
6

x<0时,f(-1)≤f(x)<0,即-
1
e
≤f(x)<0

∴x1,x2∈[m,m+3]时,|f(x1)-f(x2)|<
15
2
-(-
7
6
)=
26
3
45
2

∴m≤0时,符合题意.                                                            
综上,存在m∈(-∞,1]使原不等式恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案