精英家教网 > 高中数学 > 题目详情

【题目】已知ABC的内角ABC的对边分别为abc

(1)若的面积,求a+c值;

(2)若2cosC+)=c2,求角C

【答案】(1)5(2)

【解析】

(1)由已知利用三角形面积公式可求ac=6,结合余弦定理可求a+c的值

(2)利用平面向量数量积的运算,正弦定理,三角函数恒等变换的应用化简已知等式可求cosC=结合范围C∈(0,π),可求C的值

解:(1)∵的面积

=acsinB=ac,可得:ac=6,

由余弦定理b2=a2+c2-2accosB,可得:7=a2+c2-ac=(a+c2-3ac=(a+c2-18,

解得:a+c=5.

(2)∵2cosC+)=c2

∴2cosCaccosB+bccosA)=c2,可得:2cosCacosB+bcosA)=c

由正弦定理可得:2cosC(sinAcosB+sinBcosA)=sinC,即2cosCsinC=sinC

∵sinC≠0,

∴cosC=

C∈(0,π),

C=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,则下列命题中正确命题的个数是(

①函数上为周期函数

②函数在区间,上单调递增

③函数)取到最大值,且无最小值

④若方程)有且仅有两个不同的实根,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点DD在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

)证明:GAB的中点;

)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是(  )

A. 回答该问卷的总人数不可能是100

B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多

C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少

D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.

(1)求椭圆的方程;

(2)不经过点的直线)与椭圆交于两点,关于原点的对称点为(与点不重合),直线轴分别交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面和两条长度相等的直线型路面,桥面跨度的长不超过米,拱桥所在圆的半径为米,圆心在水面上,且所在直线与圆分别在连结点处相切.,已知直线型桥面每米修建费用是元,弧形桥面每米修建费用是.

1)若桥面(线段和弧)的修建总费用为元,求关于的函数关系式;

2)当为何值时,桥面修建总费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足对任意的恒成立,为其前n项的和,且.

1)求数列的通项

2)数列满足,其中.

①证明:数列为等比数列;

②求集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?

(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)当时,若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案