精英家教网 > 高中数学 > 题目详情

【题目】某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面和两条长度相等的直线型路面,桥面跨度的长不超过米,拱桥所在圆的半径为米,圆心在水面上,且所在直线与圆分别在连结点处相切.,已知直线型桥面每米修建费用是元,弧形桥面每米修建费用是.

1)若桥面(线段和弧)的修建总费用为元,求关于的函数关系式;

2)当为何值时,桥面修建总费用最低?

【答案】(1).(2)

【解析】

1)设为弧的中点,连结,通过解直角三角形以及弧长公式,求得的长,由此计算出修建总费用的表达式,根据长度的限制,和圆的直径,求得的取值范围.

2)利用导数求得的单调区间,进而求得当为何值时,取得最小值.

1)设为弧的中点,连结,则

中,.

又因为,所以弧长为

所以

时,;当时,,所以

所以.

2)设,则,令

时,,函数单调递减;

时,,函数单调递增;

所以当时,函数取得最小值,此时桥面修建总费用最低.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)当时,求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x万件,需另投入流动成本C(x)万元,当年产量小于7万件时,C(x)=x2+2x(万元);当年产量不小于7万件时,C(x)=6x+1nx+﹣17(万元).已知每件产品售价为6元,假若该同学生产的产M当年全部售完.

(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收人﹣固定成本﹣流动成本

(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e3≈20)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若对任意的,都有恒成立,求的最小值;

2)设,若为曲线上的两个不同的点,满足,且,使得曲线在点处的切线与直线平行,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆是它的上顶点,点各不相同且均在椭圆上.

1)若恰为椭圆长轴的两个端点,求的面积;

2)若,求证:直线过一定点;

3)若的外接圆半径为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是实数常数)的图像上的一个最高点是,与该最高点最近的一个最低点是.

(1)求函数的解析式及其单调递增区间;

(2)在中,角所对的边分别为,且,角的取值范围是区间。当时,试求函数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个极值点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为的正方形沿对角线折叠,使得平面平面,平面,的中点,且

(1)求证:

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若关于x的方程仅有1个实数根,求实数的取值范围;

2)若是函数的极大值点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案