【题目】已知函数
.
(1)若关于x的方程
仅有1个实数根,求实数
的取值范围;
(2)若
是函数
的极大值点,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面
和两条长度相等的直线型路面
、
,桥面跨度
的长不超过
米,拱桥
所在圆的半径为
米,圆心
在水面
上,且
和
所在直线与圆
分别在连结点
和
处相切.设
,已知直线型桥面每米修建费用是
元,弧形桥面每米修建费用是
元.
![]()
(1)若桥面(线段
、
和弧
)的修建总费用为
元,求
关于
的函数关系式;
(2)当
为何值时,桥面修建总费用
最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
经过椭圆
(
)的左顶点
和
上顶点
.椭圆
的右顶点为
,点
是椭圆
上位于
轴上方的动点,直线
、
与直线![]()
分别交于
、
两点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)求线段
长度的最小值;
(Ⅲ)当线段
的长度最小时,椭圆
上是否存在这样的点
,使得
的面积为
?若存在,确定点
的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
,将
的图像向右平移
个单位长度后得到函数
,
的图像关于
轴对称,且
.
(1)求函数
的解析式;
(2)设函数
,若函数
的图像在
上恰有2个最高点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
、
是三条不同的直线,
、
、
是三个不同的平面,给出下列四个命题:
①若
,
,
,
,
,则
;
②若
,
,则
;
③若
,
是两条异面直线,
,
,
,
且
,则
;
④若
,
,
,
,
,则
.
其中正确命题的序号是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com