精英家教网 > 高中数学 > 题目详情
11.cos600°的值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

分析 利用诱导公式及特殊角的三角函数值即可求值得解.

解答 解:cos600°=cos(360°+180°+60°)=-cos60°=-$\frac{1}{2}$.
故选:C.

点评 本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lg(2016+x),g(x)=lg(2016-x)
(1)判断函数f(x)-g(x)的奇偶性,并予以证明.
(2)求使f(x)-g(x)<0成立x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.k∈Z时,$\frac{sin(kπ-α)•cos(kπ+α)}{sin[(k+1)π+α]•cos[(k+1)π+α]}$的值为(  )
A.-1B.1C.±1D.与α取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某同学进入高三后,4次月考的数学成绩的茎叶图如图,则该同学数学成绩的方差是45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x3,f′(x0)=6,则x0=(  )
A.$\sqrt{2}$B.$-\sqrt{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{3}$,
(1)若$\frac{π}{6}$,$\frac{π}{6}$的夹角为$\frac{π}{6}$,求$|{\overrightarrow a-\overrightarrow b}|$;
(2)求$|{\overrightarrow a+\overrightarrow b}|$及$|{\overrightarrow a•\overrightarrow b}|$的取值范围;
(3)若$(\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=\frac{1}{2}$,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设数列{an}的前n项和${S_n}=\frac{n}{n+2}$,则a6的值为(  )
A.$-\frac{1}{28}$B.$-\frac{1}{56}$C.$\frac{1}{28}$D.$\frac{1}{56}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若关于x的不等式ax2+4ax+3≤0的解集为空集,则实数a的取值范围是$[{0,\frac{3}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明:$\frac{2sinαcosα}{(sinα+cosα-1)(sinα-cosα+1)}$=$\frac{1+cosα}{sinα}$.

查看答案和解析>>

同步练习册答案