精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(2x+
π
4
)

(1)“五点法”作出y=f(x)的图象;
(2)直接看图填空
①将y=f(x)向左平移φ个单位,得到一偶函数,则φ的最小正值为
π
8
π
8

②写出y=f(x)的一个对称点坐标
(-
π
8
,0)
(-
π
8
,0)

(3)说明如何由y=sinx的图象经过变换得到f(x)=2sin(2x+
π
4
)
的图象.
分析:(1)令2x+
π
4
分别取0,
π
2
,π,
2
,2π得到相应的自变量x的值及函数值,利用五点作图法即可作出y=f(x)的图象;
(2)由图可知坐标(-
π
8
,0)即是一个对称点;
(3)利用函数y=Asin(ωx+φ)的图象变换即可得到由y=sinx的图象经过变换得到f(x)=2sin(2x+
π
4
)的图象.
解答:解:(1)令2x+
π
4
分别取0,
π
2
,π,
2
,2π,得到相应的x值与f(x)的值,列表并作图如下:


(2)①将y=f(x)向左平移φ个单位,得到一个偶函数,则φ的最小值为
π
8
;…6分
②写出y=f(x)的一个对称点坐标(-
π
8
,0);…8分
(3)将y=sinx向右平移
π
4
个单位得到y=sin(x+
π
4
)的图象,再将横坐标缩小到原来的
1
2
倍,纵坐标保持不变得到y=sin(2x+
π
4
)的图象,
再将纵坐标扩大到原来的2倍,横坐标保持不变得到f(x)=2sin(2x+
π
4
)的图象…12分.
点评:本题考查五点法作函数y=Asin(ωx+φ)的图象,考查函数y=Asin(ωx+φ)的图象变换,考查分析与作图能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案