【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为 ,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
【答案】
(1)解:设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,
第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,
这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,
所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)
= =
(2)解:X可能的取值为400,500,800,并且P(X=800)= ,P(X=500)= ,
P(X=400)=1﹣ ﹣ = ,故X的分布列如下:
X | 400 | 500 | 800 |
P |
故EX=400× +500× +800× =506.25
【解析】(1)设第一次取出的4件产品中恰有3件优质品为事件A1 , 第一次取出的4件产品全是优质品为事件A2 , 第二次取出的4件产品全是优质品为事件B1 , 第二次取出的1件产品是优质品为事件B2 , 这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(2)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.
科目:高中数学 来源: 题型:
【题目】小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.
(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB.
(1)证明:BC1∥平面A1CD
(2)求二面角D﹣A1C﹣E的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,若对一切恒成立, 给出以下结论:
①;
②;
③的单调递增区间是 ;
④函数既不是奇函数也不是偶函数;
⑤存在经过点的直线与函数的图象不相交.其中正确结论的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴为非负半轴为极轴,与坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(1)若直线与曲线有公共点,求倾斜角的取值范围;
(2)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.
(1)求椭圆的方程;
(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com