精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)若x≥0时,f(x)≤0,求λ的最小值;
(2)设数列{an}的通项an=1+

【答案】
(1)解:由已知,f(0)=0,

f′(x)= =

∴f′(0)=0

欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,

当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,

若0<λ< 时,由f′(x)>0解得x< ,则当0<x< ,f′(x)>0,所以当0<x< 时,f(x)>0,此时不合题意,

若λ≥ ,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0

恒成立,

综上,符合题意的λ的取值范围是λ≥ ,即λ的最小值为


(2)解:令λ= ,由(I)知,当x>0时,f(x)<0,即

取x= ,则

于是a2n﹣an+ = + +…+ +

=

=

=

= =ln2n﹣lnn=ln2

所以


【解析】(1)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值;(2)根据(1)的证明,可取λ= ,由于x>0时,f(x)<0得出 ,考察发现,若取x= ,则可得出 ,以此为依据,利用放缩法,即可得到结论
【考点精析】关于本题考查的函数的最大(小)值与导数和数列的前n项和,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值;数列{an}的前n项和sn与通项an的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )
A.(0,1)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为 ,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

(1)的值

(2)求函数的单调区间

(3)设函数,且在区间内为单调递增函数求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学100位学生在市统考中的理科综合分数,以 分组的频率分布直方图如图.

(1)求直方图中的值;

(2)求理科综合分数的众数和中位数;

(3)在理科综合分数为 的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在的学生中应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+(e﹣a)x﹣b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现要完成下列3项抽样调查:

①从15种疫苗中抽取5种检测是否合格.

②涡阳县某中学共有480名教职工,其中一线教师360名,行政人员48名,后勤人员72名.为了解教职工对学校校务公开方面的意见,拟抽取一个容量为20的样本.

③涡阳县某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.

较为合理的抽样方法是( )

A. ①简单随机抽样, ②系统抽样, ③分层抽样

B. ①简单随机抽样, ②分层抽样, ③系统抽样

C. ①系统抽样, ②简单随机抽样, ③分层抽样

D. ①分层抽样, ②系统抽样, ③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象过点

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若函数 ,则是否存在实数,使得函数的最大值为0?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C: =1经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(A在x轴下方).

(1)求椭圆C的标准方程;
(2)过点O且平行于l的直线交椭圆C于点M,N,求 的值;
(3)记直线l与y轴的交点为P.若 = ,求直线l的斜率k.

查看答案和解析>>

同步练习册答案