精英家教网 > 高中数学 > 题目详情
化简:(1)
sin(540°+α)•cos(-α)
tan(α-180°)

(2)cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα
(α为第四象限角).
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)原式利用诱导公式化简,约分即可得到结果;
(2)原式利用二次根式的化简公式化简,再利用同角三角函数间基本关系变形即可得到结果.
解答: 解:(1)原式=
sin(360°+180°+α)cosα
tanα
=
-sinαcosα
tanα
=-cos2α;
(2)∵α为第四象限角,
∴sinα<0,cosα>0,
则原式=cosα
(1-sinα)2
|cosα|
+sinα
(1-cosα)2
|sinα|
=1-sinα-1+cosα=cosα-sinα.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则
f′(1)
b
的取值范围为(  )
A、(4,+∞)
B、(2+2
3
,+∞)
C、[4,+∞)
D、[2+2
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
sin2x-cos2x的图象过点(
π
8
,0).
(Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的最小正周期及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)令ω=1,求函数F(x)=f(x)+f(x+
π
2
)的单调区间;
(2)令ω=2,将函数y=f(x)的图象向左平移
π
6
个单位,再往上平移1个单位,得到函数y=g(x)的图象.对任意的a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率;
(Ⅱ)X表示该地的3位车主中,甲、乙两种保险都不购买的车主数,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如表给出一个“三角形数阵”:
1
4
   
1
2
1
4
  
3
4
3
8
3
16
 
   
已知每一列的数成等差数列,从第三行起,每一行的数成等比数列,每一行的公比都相等,记第i行第j列的数为aij(i≥j,i,j∈N*),
(1)求a83
(2)试写出aij关于i,j的表达式;
(3)记第n行的和为An,求数列{An}的前m项和Bm的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算:
.
ab
cd
.
=ad-bc.
(1)若角α是△ABC的一个内角,且
.
sinαcosα
-11
.
=
1
5
,请判断△ABC形状并求sinα-cosα的值;
(2)求f(x)=
.
cosx4
msinxcosx
.
-3m(m∈R)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:
A班的5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.
B班的5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.
(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?
(Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(Ⅲ)现从A班的上述5名学生中随机选取3名学生,用X表示其中视力大于4.6的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD-A1B1C1D1是棱长为1的正方体.
(1)求异面直线BC1与B1D1所成的角.
(2)求直线BC1与平面ABCD所成的角.
(3)求二面角C1-BD-A的正切值.

查看答案和解析>>

同步练习册答案