精英家教网 > 高中数学 > 题目详情
已知点F(1,0),动点P到直线x=-2的距离比到F的距离大1.
(1)求动点P所在的曲线C的方程;
(2)A,B为曲线C上两动点,若|AF|+|BF|=4,求证:AB垂直平分线过定点,并求出该定点.
分析:(1)根据抛物线定义可知曲线C是以F为焦点、直线x=-1为准线的抛物线,进而可得抛物线的方程.
(2)设AB中点M(1,y0),先得出直线AB的斜率与其中点坐标的关系,再由垂直得出其垂线的斜率,由点斜式得出中垂线方程,发现其为一过定点的直线,得出此坐标即可.
解答:解:(1)由条件,P到F(1,0)的距离等于到直线x=-1的距离,
所以,曲线C是以F为焦点、直线x=-1为准线的抛物线,其方程为y2=4x
(2)∵|AF|+|BF|=4,
∴x1+x2=2,
设AB中点M(1,y0),
kAB=
2
y0

所以中垂线方程为:y-y0=-
y0
2
(x-1)

它恒过点(3,0).
故AB垂直平分线过定点(3,0).
点评:本题主要考查抛物线的应用及过定点的直线方程定点的求法,考查了综合运用所学知识和运算的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足k1•k2=2,试推断:动直线DE是否过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线L:x=-1,P为平面上的动点,过点P作直线L的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求点P的轨迹C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,若
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)过点M(-1,0)作直线m交轨迹C于A,B两点.
(Ⅰ)记直线FA,FB的斜率分别为k1,k2,求k1+k2的值;
(Ⅱ)若线段AB上点R满足
|MA|
|MB|
=
|RA|
|RB|
,求证:RF⊥MF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,点P为平面上的动点,过点P作直线l的垂线,垂足为点Q,且
QP
FQ
=
PF
FQ
,则动点P的轨迹C的方程是
 

查看答案和解析>>

同步练习册答案