精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+1.
(1)用定义证明f(x)是偶函数;
(2)用定义证明f(x)在[0,+∞)上是增函数;
(3)在给定的坐标系中画出f(x)的图象,写出函数f(x)在x∈[-1,2]上的最大值是________与最小值是________.

解:(1)证明:f(x)=x2+1是R上的函数,
f(-x)=(-x)2+1=x2+1
即f(x)=f(-x)所以f(x)是偶函数
(2)证明:任取x1,x2使0≤x1<x2
f(x1)-f(x2
=(x12+1)-(x22+1)=(x1-x2)(x1+x2
∵0≤x1<x2∴x1-x2<0;x1+x2>0;
(x1-x2)(x1+x2)<0
f(x1)-f(x2)<0
∴f(x1)<f(x2
∴f(x)在[0,+∞)上是增函数;
(3)如图所示:
最大值为5,最小值为0
分析:(1)由偶函数的定义直接证明即可.
(2)首先在[0,+∞)上任取两个自变量,然后利用做差法比较对应函数值的大小即可.
(3)由二次函数的图象直接作出图象即可.由图象可看出最大值和最小值.
点评:本题考查函数的奇偶性和单调性的判断和证明,以及函数的最值和图象.难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案