精英家教网 > 高中数学 > 题目详情
19.当p满足p∈(-2,-1)时,7x2-(p+13)x+p2-p-2=0的两个不等实根α,β,分别满足0<α<1,1<β<2.

分析 令f(x)=7x2-(p+13)x+p2-p-2,由题意利用二次函数的性质,求得p的范围.

解答 解:令f(x)=7x2-(p+13)x+p2-p-2,由题意可得$\left\{\begin{array}{l}{f(0){=p}^{2}-p-2>0}\\{f(1)=7-(p+13){+p}^{2}-p-2<0}\\{f(2)=28-2(p+13){+p}^{2}-p-2>0}\end{array}\right.$,
求得-2<p<-1,
故答案为:p∈(-2,-1).

点评 本题主要考查二次函数的性质的应用,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球,则在前两次取出的是白球的前提下,第三次取出红球的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-x2+2x+2a|x-a|+b,其中常数a,b∈R.
(1)若a=1,求函数f(x)的单调递增区间;
(2)若对任意实数a∈[$\frac{1}{2}$,2],不等式f(x)<0在x∈[-$\frac{1}{2}$,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一组样本点(xi,yi),(其中i=1,2,3,…,30),变量x与y线性相关,且根据最小二乘法求得的回归方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,则下列说法正确的是(  )
A.至少有一个样本点落在回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上
B.若$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$斜率$\stackrel{∧}{b}$>0,则变量x与y正相关
C.对所有的解释变量xi(i=1,2,3,…,30),$\stackrel{∧}{b}$xi+$\stackrel{∧}{a}$的值与yi有误差
D.若所有样本点都在$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上,则变量间的相关系数为1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\root{3}{{2+\frac{2}{7}}}=2\root{3}{{\frac{2}{7}}},\root{3}{{3+\frac{3}{26}}}=3\root{3}{{\frac{3}{26}}},\root{3}{{4+\frac{4}{63}}}=4\root{3}{{\frac{4}{63}}},…,\root{3}{{2015+\frac{m}{n}}}=2015\root{3}{{\frac{m}{n}}}$,
则$\frac{n+1}{m^2}$=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=log2x-logx4(0<x<1),数列{an}满足f(2${\;}^{{a}_{n}}$)=2n(n∈N*),判断{an}有没有最小的项,若有,请求出;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足2an+1an-3an+1-an+2=0,则n∈N*,a1=$\frac{1}{2}$
(1)计算a2,a3,a4
(2)猜想数列{a4}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:$\frac{{x}^{2}+7x+9}{{x}^{2}+2x-5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设P是抛物线y=$\frac{1}{4}$x2-3上横坐标非负的一个动点,过P引圆x2+y2=2的两条切线,切点分别为T1、T2,当|T1T2|最小时,直线T1T2的方程是x+y-1=0.

查看答案和解析>>

同步练习册答案