精英家教网 > 高中数学 > 题目详情
1.在正方体ABCD-A1B1C1D1中,点P为DD1的中点,点M为四边形ABCD的中心.
求证:对A1B1上任一点N,都有MN⊥AP.

分析 取AD的中点E,连接A1E,ME,则A1EMN是平行四边形,AP⊥A1E,AP⊥NE,证明AP⊥平面A1EMN,即可得出结论.

解答 证明:取AD的中点E,连接A1E,ME,则A1EMN是平行四边形,AP⊥A1E,AP⊥NE,
∵A1E∩NE=E,
∴AP⊥平面A1EMN,
∵MN?平面A1EMN,
∴对A1B1上任一点N,都有MN⊥AP.

点评 本题考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合P={α|2kπ≤α≤(2k+1)π,k∈Z},Q={α|-4≤α≤4},则P∩Q=(  )
A.φB.{α|-4≤α≤-π,或0≤α≤π}
C.{α|-4≤α≤4}D.{α|0≤α≤π}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列双曲线的实轴长,虚轴长,焦点坐标,顶点坐标,离心率与渐近线方程,并用“描点法”画出图形.
(1)9x2-y2=81;
(2)$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)满足:对于定义域内任一个x值,总存在-个常数T≠0,使得f(x+T)=f(x)都成立,则称f(x)是周期函数,其中常数T是f(x)的周期.若奇函数 f(x)是以3为周期的周期函数,已知f(1)=3.求f(47)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数f(x)=lg(x-1)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下面数列的通项公式,写出数列的前4项和第7项.
(1)an=sin$\frac{nπ}{3}$   
(2)an=$\frac{1}{{n}^{3}}$   
(3)an=$\frac{(-1)^{n+1}\sqrt{n}}{n(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=2lgx-lg(x-1)-lga有两个零点,则a的取值范围是(  )
A.0≤a≤2B.2<a≤4C.a≥4D.a>4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解方程:
(1)$\frac{1+{3}^{-x}}{1+{3}^{x}}$=3;
(2)log4(3x-1)=log4(x-1)+log4(3+x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=lg$\frac{1-x}{1+x}$,且f(x)+f(y)=f(z),则z=(  )
A.$\frac{xy}{x+y}$B.$\frac{x+y}{1+xy}$C.$\frac{x-y}{1+xy}$D.$\frac{xy}{x+y}$

查看答案和解析>>

同步练习册答案