精英家教网 > 高中数学 > 题目详情

如图,四边形ABCD中,AB=AD=CD=1,数学公式,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论:
①A′C⊥BD;  
②CA′与平面A′BD所成的角为30°;
③∠BA′C=90°;  
④四面体A′-BCD的体积为数学公式
其中正确的有


  1. A.
    4个
  2. B.
    3个
  3. C.
    2个
  4. D.
    1个
D
分析:根据题意,依次分析命题:对于①可利用反证法说明真假,若①成立可得BD⊥A'D,产生矛盾;对于②由CA'与平面A'BD所成的角为∠CA'D=45°知②的真假;对于③△BA'D为等腰Rt△,CD⊥平面A'BD,得BA'⊥平面A'CD,根据线面垂直可知∠BA′C=90°,对于④利用等体积法求出所求体积进行判定即可,综合可得答案.
解答:若①成立可得BD⊥A'D,产生矛盾,故①不正确;
由CA'与平面A'BD所成的角为∠CA'D=45°知②不正确;
由题设知:△BA'D为等腰Rt△,CD⊥平面A'BD,得BA'⊥平面A'CD,于是③正确;
,④不正确.
其中正确的有1个
故选D.
点评:本题主要考查了异面直线及其所成的角,以及三棱锥的体积的计算,同时考查了空间想象能力,论证推理能力,解题的关键是须对每一个进行逐一判定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案