ÒÑÖªÎÞÇîÊýÁÐ{an}ÖУ¬a1£¬a2£¬¡­£¬amÊÇÊ×ÏîΪ10£¬¹«²îΪ-2µÄµÈ²îÊýÁУ»am+1£¬am+2£¬¡­a2mÊÇÊ×ÏîΪ
1
2
£¬¹«±ÈΪ
1
2
µÄµÈ±ÈÊýÁУ¨m¡Ý3£¬m¡ÊN*£©£¬²¢¶ÔÈÎÒân¡ÊN*£¬¾ùÓÐan+2m=an³ÉÁ¢£®
£¨1£©µ±m=12ʱ£¬Çóa2010£»
£¨2£©Èôa52=
1
128
£¬ÊÔÇómµÄÖµ£»
£¨3£©ÅжÏÊÇ·ñ´æÔÚm£¬Ê¹S128m+3¡Ý2010³ÉÁ¢£¬Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉan+24=an£¬Öªa2010=a18£¬a18ÊÇÒÔ
1
2
ΪÊ×ÏÒÔ
1
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁеĵÚ6ÏËùÒÔa2010=
1
64
£®
£¨2£©ÓÉ
1
128
=(
1
2
)7
£¬Öªm¡Ý7£¬ÓÉa52=
1
128
£¬Öª2km+m+7=£¨2k+1£©m+7=52£¬ÓÉ´ËÈëÊÖ¿ÉÇó³öm¿ÉÈ¡9¡¢15¡¢45£®
£¨3£©ÓÉS128m+3=64S2m+a1+a2+a3=64(10m+
m(m-1)
2
(-2)+
1
2
(1-(
1
2
)
m
)
1-
1
2
)+10+8+6
£¬ÖªS128m+3=704m-64m2+88-64(
1
2
)m¡Ý2010
£¬704m-64m2¡Ý2010-88+64(
1
2
)m=1922+64(
1
2
)m
£®Éèf£¨m£©=704m-64m2£¬g(m)=1922+64(
1
2
)m
£¾1922£»f£¨m£©=-64£¨m2-11m£©£¬f£¨x£©max=f£¨5£©=f£¨6£©=1920£¬ËùÒÔ²»´æÔÚÕâÑùµÄm£®
½â´ð£º£¨1£©an+24=an£»ËùÒÔa2010=a18£¨2·Ö£©
a18ÊÇÒÔ
1
2
ΪÊ×ÏÒÔ
1
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁеĵÚ6Ï
ËùÒÔa2010=
1
64
£¨4·Ö£©

£¨2£©
1
128
=(
1
2
)7
£¬ËùÒÔm¡Ý7£¨5·Ö£©
ÒòΪa52=
1
128
£¬ËùÒÔ2km+m+7=£¨2k+1£©m+7=52£¬ÆäÖÐm¡Ý7£¬m¡ÊN£¬k¡ÊN£¨6·Ö£©
£¨2k+1£©m=45£¬
µ±k=0ʱ£¬m=45£¬³ÉÁ¢£®
µ±k=1ʱ£¬m=15£¬³ÉÁ¢£»
µ±k=2ʱ£¬m=9³ÉÁ¢£¨9·Ö£©
µ±k¡Ý3ʱ£¬m¡Ü
45
7
£¼7
£»
ËùÒÔm¿ÉÈ¡9¡¢15¡¢45£¨10·Ö£©

£¨3£©S128m+3=64S2m+a1+a2+a3=64(10m+
m(m-1)
2
(-2)+
1
2
(1-(
1
2
)
m
)
1-
1
2
)+10+8+6
£¨12·Ö£©S128m+3=704m-64m2+88-64(
1
2
)m¡Ý2010

704m-64m2¡Ý2010-88+64(
1
2
)m=1922+64(
1
2
)m

Éèf£¨m£©=704m-64m2£¬g(m)=1922+64(
1
2
)m
£¨14·Ö£©
g£¨m£©£¾1922£»
f£¨m£©=-64£¨m2-11m£©£¬¶Ô³ÆÖám=
11
2
N*
£¬
ËùÒÔf£¨m£©ÔÚm=5»ò6ʱȡ×î´óf£¨x£©max=f£¨5£©=f£¨6£©=1920£¬
ÒòΪ1922£¾1920£¬ËùÒÔ²»´æÔÚÕâÑùµÄm£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеIJ»µÈʽµÄ×ÛºÏÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¼ÆËãÄÜÁ¦µÄÅàÑø£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÎÞÇîÊýÁÐ{an}ǰnÏîºÍSn=
13
an-1
£¬ÔòÊýÁÐ{an}µÄ¸÷ÏîºÍΪ
 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÎÞÇîÊýÁÐ{an}ÖÐa1=1£¬ÇÒÂú×ã´ÓµÚ¶þÏʼÿһÏîÓëǰһÏîµÄ±ÈֵΪͬһ¸ö³£Êý-
1
2
£¬ÔòÎÞÇîÊýÁÐ{an}µÄ¸÷ÏîºÍ
2
3
2
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ãÉÐÐÇøÒ»Ä££©ÒÑÖªÎÞÇîÊýÁÐ{an}£¬Ê×Ïîa1=3£¬ÆäǰnÏîºÍΪSn£¬ÇÒan+1=£¨a-1£©Sn+2£¨a¡Ù0£¬a¡Ù1£¬n¡ÊN*£©£®ÈôÊýÁÐ{an}µÄ¸÷ÏîºÍΪ-
8
3
a
£¬Ôòa=
-
1
2
-
1
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÆÕÍÓÇø¶þÄ££©ÒÑÖªÎÞÇîÊýÁÐ{an}ÖУ¬a1£¬a2£¬¡­£¬amÊÇÒÔ10ΪÊ×ÏÒÔ-2Ϊ¹«²îµÄµÈ²îÊýÁУ»am+1£¬am+2£¬¡­£¬a2mÊÇÒÔ
1
2
ΪÊ×ÏÒÔ
1
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¨m¡Ý3£¬m¡ÊN*£©£»²¢ÇÒ¶ÔÒ»ÇÐÕýÕûÊýn£¬¶¼ÓÐan+2m=an³ÉÁ¢£®
£¨1£©µ±m=3ʱ£¬ÇëÒÀ´Îд³öÊýÁÐ{an}µÄǰ12Ï
£¨2£©Èôa23=-2£¬ÊÔÇómµÄÖµ£»
£¨3£©ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÎÊÊÇ·ñ´æÔÚmµÄÖµ£¬Ê¹µÃS128m+3¡Ý2008³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÎÞÇîÊýÁÐ{an}ÖУ¬a1£¬a2£¬¡­£¬am¹¹³ÉÊ×ÏîΪ2£¬¹«²îΪ-2µÄµÈ²îÊýÁÐam+1£¬am+2£¬¡­£¬a2m£¬¹¹³ÉÊ×ÏîΪ
1
2
£¬¹«±ÈΪ
1
2
µÄµÈ±ÈÊýÁУ¬ÆäÖÐm¡Ý3£¬m¡ÊN+£¬
£¨l£©µ±1¡Ün¡Ü2m£¬n¡ÊN+£¬Ê±£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èô¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐan+2m=an³ÉÁ¢£®
¢Ùµ±a27=
1
64
ʱ£¬ÇómµÄÖµ£»
¢Ú¼ÇÊýÁÐ{an}µÄǰnÏîºÍΪSn£®ÅжÏÊÇ·ñ´æÔÚm£¬Ê¹µÃS4m+1¡Ý2³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸