精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N)的图象按向量
e
=(-1,0)
平移后得到的图象关于原点对称,且f(2)=2,f(3)<3.
(1)求a,b,c的值;
(2)设0<|x|<1,0<|t|≤1.求证:|t+x|+|t-x|<|f(tx+1)|
(3)定义函数G(x)=f(x)-x+2.当n为正整数时,求证:G(4)×G(6)×G(8)×…×G(2n)>
2n+1
2
(1)函数f(x)的图象按向量
e
=(-1,0)

平移后得到的图象所对应的函数式为g(x)=f(x+1)=
ax2+1
bx+c

因为图象关于原点对称,∴g(-x)=-g(x),即
a(-x)2+1
b(-x)+c
=-
ax2+1
bx+c

∵a∈N,∴ax2+1>0,b(-x)+c=bx+c,∴c=0
∵f(2)=2,∴a=2b-1,又f(3)<3,∴4a+1<6b由条件知a=1,b=1
(2)∵f(x)=
(x-1)2+1
x-1
,∴f(tx+1)=tx+
1
tx

∴|f(tx+1)|=|tx+
1
tx
|=|tx|+|
1
tx
|≥2
|tx|•|
1
tx
|
=2
当且仅当|tx|=1时等号成立.
但0<|x|<1,0<|t|≤1,∴|tx|≠1,|f(tx+1)|>2.
由于S=(|t+x|+|t-x|)2=2(t2+x2)+2|t2-x2|
当|t|≥|x|时,S=4t2≤4;当|t|<|x|时S=4x2<4.
∴|t+x|+|t-x|≤2<|f(tx+1)|,即|t+x|+|t-x|<|f(tx+1)|
(3)由(1)知:G(x)=f(x)-x+2=
x
x-1

令A=G(4)×G(6)×G(8)×…×G(2n)=
4
3
×
6
5
×…×
2n
2n-1

由不等式
b
a
b+m
a+m
(b>a,a,b,m∈R+),
4
3
5
4
6
5
7
6
,…,
2n-2
2n-3
2n-1
2n-2
2n
2n-1
2n+1
2n

将这些同向不等式相乘得
A>
5
4
×
7
6
×…×
2n-1
2n-2
×
2n+1
2n

A2
4
3
×
5
4
×
6
5
×
7
6
×…×
2n
2n-1
×
2n+1
2n
=
2n+1
3
2n+1
4

故A>
2n+1
2
,即G(4)×G(6)×G(8)×…×G(2n)>
2n+1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案