精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是(
A.在(0, )内,sinx>cosx
B.函数y=2sin(x+ )的图象的一条对称轴是x= π
C.函数y= 的最大值为π
D.函数y=sin2x的图象可以由函数y=sin(2x﹣ )的图象向右平移 个单位得到

【答案】C
【解析】解:对于A,当x∈(0, )时,由y=sinx,y=cosx的性质得:
当x∈(0, )时,cosx>sinx,x= 时,sinx=cosx,x∈( )时,sinx>cosx,故A错误;
对于B,令x+ =kπ+ ,k∈Z,显然当x= π时,找不到整数k使上式成立,故B错误;
对于C,由于tan2x≥0,∴1+tan2x≥1.
∴y= ≤π.
∴函数y= 的最大值为π,C正确;
对于D,y=sin(2x﹣ )的图象向右平移 个单位得到:y=sin[2(x﹣ )﹣ ]=sin(2x﹣ )=﹣cos2x,故D错误.
故选:C.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

(Ⅰ)已知,证明:

(Ⅱ)若对任意实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式ax2﹣2x+1>0对x∈( ,+∞)恒成立,则a的取值范围为(
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2+5x+c>0的解集为{x| <x< },
(1)求a,c的值;
(2)解关于x的不等式ax2+(ac+b)x+bc≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,取相同单位长度(其中 ),若倾斜角为且经过坐标原点的直线与圆相交于点点不是原点).

(1)求点的极坐标;

(2)设直线过线段的中点,且直线交圆两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知侧棱垂直于底面的四棱柱中,

(1)若是线段上的点且满足,求证:平面平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 的中点, .

(1)证明: 平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,动圆与圆外切,且与直线相切,记圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设过定点为非零常数)的动直线与曲线交于两点,问:在曲线上是否存在点(与两点相异),当直线的斜率存在时,直线的斜率之和为定值.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,且,点是棱的中点,平面与棱交于点.

)求证: .

)若,且平面平面

求①二面角的锐二面角的余弦值.

②在线段上是否存在一点,使得直线与平面所成角等于,若存在,确定的位置,若不存在,说明理由.

查看答案和解析>>

同步练习册答案