精英家教网 > 高中数学 > 题目详情
14.已知椭圆$\frac{{x}^{2}}{10-m}$-$\frac{{y}^{2}}{2-m}$=1,长轴在y轴上,若焦距为4,则m等于8.

分析 根据题意,由椭圆的方程变形为标准方程的形式,分析可得m-2>10-m>0,解可得m的范围,又由椭圆的焦距可得(m-2)-(10-m)=4,解可得m的值,即可得答案.

解答 解:根据题意,椭圆$\frac{{x}^{2}}{10-m}$-$\frac{{y}^{2}}{2-m}$=1,长轴在y轴上,
则其标准方程为$\frac{{y}^{2}}{m-2}$+$\frac{{x}^{2}}{10-m}$=1,且有m-2>10-m>0,
解可得3<m<10,
若椭圆的焦距为4,即c=2,
则有(m-2)-(10-m)=4,即2m-12=4,
解可得:m=8;
故答案为:8.

点评 本题考查椭圆的标准方程,注意题目中椭圆的方程不是标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}中a9+a10=a(a≠0),a19+a20=b(b≠0),则a99+a100=(  )
A.$\frac{b^9}{a^8}$B.${({\frac{b}{a}})^9}$C.$\frac{{{b^{10}}}}{a^9}$D.${({\frac{b}{a}})^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.二次函数y=f(x)满足f(x+3)=f(3-x),x∈R且f(x)=0有两个实根x1,x2,则x1+x2=(  )
A.6B.-6C..3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.[示范高中]设x>y>z,且$\frac{1}{x-y}$+$\frac{1}{y-z}$>$\frac{n}{x-z}$(n∈N*)恒成立,则n的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x∈R,则“x2-2x≥0”是“x≥5”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有f(x-$\frac{3}{2}$)=f(x+$\frac{1}{2}$),当x∈[0,2)时,f(x)=ex-1,则f(2017)+f(-2016)=(  )
A.1-eB.-1-eC.e-1D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,$\frac{π}{2}$].
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α-$\frac{π}{6}$)的值;
(2)设函数f(α)=sinα•($\overrightarrow{OP}$•$\overrightarrow{OQ}$),求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若△ABC的边BC上存在一点M(异于B,C),将△ABM沿AM翻折后使得AB⊥CM,则内角A,B,C必满足(  )
A.B≥90°B.B<90°C.C<90°D.A<90°

查看答案和解析>>

同步练习册答案