| A. | ($\frac{\sqrt{2}}{2}$,$\sqrt{2}$] | B. | (1,$\sqrt{2}$] | C. | [$\frac{\sqrt{2}}{2}$,$\sqrt{2}$] | D. | [1,$\sqrt{2}$] |
分析 根据题意,b>0,且f(-x)=-f(x),求得a=2,可得f(x)=lg$\frac{1+2x}{1-2x}$,故函数的定义域为(-$\frac{1}{2}$,$\frac{1}{2}$),0<b≤$\frac{1}{2}$,从而求得ab的范围.
解答 解:根据定义在区间(-b,b)上的非常函数f(x)=lg$\frac{1+ax}{1-2x}$是奇函数,b>0,且f(-x)=-f(x),
∴lg$\frac{1-ax}{1+2x}$=-lg$\frac{1+ax}{1-2x}$,即 lg$\frac{1-ax}{1+2x}$+lg$\frac{1+ax}{1-2x}$=lg($\frac{1-ax}{1+2x}$•$\frac{1+ax}{1-2x}$ )=0,∴$\frac{1{-a}^{2}{•x}^{2}}{1-4{•x}^{2}}$=1,∴a=2或a=-2(不合题意,舍去).
故f(x)=lg$\frac{1+2x}{1-2x}$,故函数的定义域为(-$\frac{1}{2}$,$\frac{1}{2}$),0<b≤$\frac{1}{2}$,∴1<ab≤$\sqrt{2}$,
故选:B.
点评 本题主要考查函数的奇偶性的应用,函数的定义域以及值域,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 3 | C. | -$\frac{1}{3}$ | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-∞,1) | C. | (0,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{π}^{2}}{4}$+1 | B. | $\frac{{π}^{2}}{4}$-1 | C. | $\frac{3{π}^{2}}{8}$-1 | D. | $\frac{3{π}^{2}}{8}$+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com