【题目】在
中,角
所对的边分别为
,且
.
(1)求角
的大小;
(2)若
,求
周长的最大值.
【答案】(1)
;(2)
.
【解析】
试题分析:(1)已知等式利用正弦定理化简,由
求出
的值,即可确定出
的度数;(2)由余弦定理列出关系式,得到
,化简为
,用基本不等式可得到
的最值,得到周长的最大值.
试题解析:(1)
,即为
,
代入正弦定理得:
........................2分
又
,
,∴
,即
................4分
又
,∴
............6分
(2)由余弦定理得
,即
,
化简得,
,.....................7分
∵
,∴
,∴
,.........8分
∵
,∴
,当且仅当
时取等号成立,
解得
,
∴
(当且仅当
时取等号),.......................11分
∴
(当且仅当
时取等号),
∴
周长的最大值为
.............................12分
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(x﹣a)2lnx,a∈R.
(I)若x=e是y=f(x)的极值点,求实数a的值;
(Ⅱ)若函数y=f(x)﹣4e2只有一个零点,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】时下,租车已经成为新一代的流行词,租车自驾游也慢慢流行起来,某小车租车点的收费标准是,不超过2天按照300元计算;超过两天的部分每天收费标准为100元(不足1天的部分按1天计算).有甲乙两人相互独立来该租车点租车自驾游(各租一车一次),设甲、乙不超过2天还车的概率分别为
;2天以上且不超过3天还车的概率分别
;两人租车时间都不会超过4天.
(1)求甲所付租车费用大于乙所付租车费用的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的焦点
,过右焦点
的直线
与
相交于
两点,若
的周长为短轴长的
倍.
(1)求
的离心率;
(2)设
的斜率为
,在
上是否存在一点
,使得
?若存在,求出点
的坐标; 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获
(单位:
)与它的“相近”作物株数
之间的关系如下表所示:
| 1 | 2 | 3 | 4 |
| 51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
![]()
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)在所种作物中堆积选取一株,求它的年收获量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程
,变量
增加一个单位时,
平均增加5个单位;③线性回归方程
必过
;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( )
A.0 B.1 C. 2 D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入
种黄瓜的年收入
与投入
(单位:万元)满足
.设甲大棚的投入为
(单位:万元),每年两个大棚的总收益为
(单位:万元)
(1)求
的值;
(2)试问如何安排甲、乙两个大棚的投入,才能使总收益
最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
![]()
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(Ⅱ)现准备勘探新井
,若通过1、3、5、7号井计算出的
的值(
精确到0.01)相比于(Ⅰ)中
的值之差不超过10%,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
)
(Ⅲ)设出油量与勘探深度的比值
不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com