精英家教网 > 高中数学 > 题目详情
4.设数列{an}的前n项和为Sn,满足a1=1,2Sn=an+1-1.
(Ⅰ)求{an}的通项公式.
(Ⅱ)设bn=log3an+1,数列{bn}的前n项和为Tn,求数列{$\frac{1}{{T}_{n}}$+4an}的前n项和.

分析 (Ⅰ)由条件,将n换为n-1,两式相减,求出a2=3,再由等比数列的通项公式,即可得到所求;
(Ⅱ)bn=log3an+1=log33n=n,运用等差数列的求和公式可得Tn,再由$\frac{1}{{T}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),运用分组求和裂项相消求和,化简即可得到所求和.

解答 解:(Ⅰ)a1=1,2Sn=an+1-1,
可得2Sn-1=an-1,(n≥2),
两式相减可得,2an=2Sn-2Sn-1=an+1-an
即有an+1=3an(n≥2),
由2a1=2S1=a2-1,可得a2=3,
则an=a2qn-2=3•3n-2=3n-1,对n=1也成立,
则{an}的通项公式为an=3n-1
(Ⅱ)bn=log3an+1=log33n=n,
则前n项和为Tn=$\frac{1}{2}$n(n+1),
可得$\frac{1}{{T}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
则数列{$\frac{1}{{T}_{n}}$}的前n项和为2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$;
数列{4an}的前n项和为4•$\frac{1-{3}^{n}}{1-3}$=2(3n-1).
则数列{$\frac{1}{{T}_{n}}$+4an}的前n项和为$\frac{2n}{n+1}$+2(3n-1).

点评 本题考查数列的通项公式的求法,注意运用数列递推式,考查数列的求和方法:直接法和裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如果圆(x-a)2+(y-a)2=8上存在一点P到直线y=-x的最短距离为$\sqrt{2}$,则实数a的值为(  )
A.-3B.3C.$3\sqrt{2}$D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥O-ABC底面ABC的顶点在半径为$\sqrt{2}$的球O表面上,且AB=$\sqrt{2}$,AC=$\sqrt{2}$,BC=2,则三棱锥O-ABC的体积为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=l的右焦点,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若将函数f(x)=sin(2x+$\frac{π}{6}$)的图象向左平移$\frac{π}{4}$个单位长度,再向下平移1个单位长度,得到函数g(x)的图象,则g(x)的一个对称中心为(  )
A.($\frac{π}{6}$,-1)B.($\frac{π}{3}$,-1)C.($\frac{π}{6}$,0)D.($\frac{π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{|x-5|-1,3≤x≤7}\end{array}\right.$(a>0,且a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围是(  )
A.[$\frac{1}{7}$,$\frac{1}{5}$]∪{3}B.[3,5]∪{$\frac{1}{7}$}C.[$\frac{1}{7}$,$\frac{1}{3}$)∪{5}D.[3,7)∪{$\frac{1}{5}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过点(1,0)且与直线x-$\sqrt{2}$y+3=0平行的直线l被圆(x-6)2+(y-$\sqrt{2}$)2=7所截得的弦长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某小学1000名学生期中考试数学成绩的频率分布直方图如图所示.其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].根据统计学的知识估计成绩在[80,90)内的人数约为200.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.进位制是人们为了计数和运算方便而约定的记数系统,在日常生活中,我们最熟悉、最常用的是十进制.如图是实现将某进制数a化为十进制数b的程序框图,若输入的k=2,a=110,n=3,则输出的b=(  )
A.14B.12C.6D.3

查看答案和解析>>

同步练习册答案