精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的左右焦点分别为,离心率.过的直线交椭圆于两点,三角形的周长为.

(1)求椭圆的方程;

(2)若弦,求直线的方程.

【答案】(1);(2).

【解析】试题分析:1)利用椭圆的离心率以及的周长为8,求出acb,即可得到椭圆的方程,
2)求出直线方程与椭圆方程联立,点的坐标为, 的坐标为求出AB坐标,然后求解三角形的面积即可.

试题解析:

(1)三角形的周长,所以.

离心率,所以,则.

椭圆的方程为:

(2)设点的坐标为, 的坐标为 的斜率为显然存在)

.

.

点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x+m在区间 上的最小值为3,求常数m的值及此函数当x∈[a,a+π](其中a可取任意实数)时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级共有学生195人,其中女生105人,男生90人.现采用按性别分层抽样的方法,从中抽取13人进行问卷调查.设其中某项问题的选择分别为“同意”、“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.

同意

不同意

合计

女学生

4

男学生

2

(Ⅰ)完成上述统计表;

(Ⅱ)根据上表的数据估计高三年级学生该项问题选择“同意”的人数;

(Ⅲ) 从被抽取的女生中随机选取2人进行访谈,求选取的2名女生中至少有一人选择“同意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.
(1)求圆C1:x2+y2=25被直线l截得的弦长;
(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;
(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 为直角梯形, ,四边形为等腰梯形, ,已知 . 

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为),上一点,以为边作等边三角形,且三点按逆时针方向排列.

(Ⅰ)当点上运动时,求点运动轨迹的直角坐标方程;

(Ⅱ)若曲线 ,经过伸缩变换得到曲线,试判断点的轨迹与曲线是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点为,左,右顶点为,过点

直线分别交椭圆于点.

(1)设动点,满足,求点的轨迹方程;

(2)当时,求点的坐标;

(3)设,求证:直线轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:

分组(岁)

频数

合计

(1)求频率分布表中的值,并补全频率分布直方图;

(2)在抽取的这名市民中,按年龄进行分层抽样,抽取人参加国产手机用户体验问卷调查,现从这人中随机选取人各赠送精美礼品一份,设这名市民中年龄在内的人数,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案