【题目】已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.
(1)求圆C1:x2+y2=25被直线l截得的弦长;
(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;
(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.
【答案】解:(1)因为圆
的圆心O(0,0),半径r=5,
所以,圆心O到直线l:3x﹣4y﹣15=0的距离d:
,由勾股定理可知,
圆
被直线l截得的弦长为
.
(2)圆C与圆C1的公共弦方程为2x﹣4my﹣4m2﹣25=0,
因为该公共弦平行于直线3x﹣4y﹣15=0,
则
≠
,
解得:m=![]()
经检验m=
符合题意,故所求m=
;
(3)假设这样实数m存在.
设弦AB中点为M,由已知得|AB|=2|PM|,即|AM|=|BM|=|PM|
所以点P(2,0)在以弦AB为直径的圆上.
设以弦AB为直径的圆方程为:x2+y2﹣2x+4my+4m2+λ(3x﹣4y﹣15)=0,
则![]()
消去λ得:100m2﹣144m+216=0,25m2﹣36m+54=0
因为△=362﹣4×25×54=36(36﹣25×6)<0
所以方程25m2﹣36m+54=0无实数根,
所以,假设不成立,即这样的圆不存在.
【解析】(1)根据直线和圆相交的弦长公式即可求圆C1:x2+y2=25被直线l截得的弦长;
(2)求出两圆的公共弦结合直线平行的条件即可求出直线l;
(3)根据两点间的距离公式结合弦长关系即可得到结论.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,底面
为正三角形,
底面
,且
,
是
的中点.
![]()
(1)求证:
平面
;
(2)求证:平面
平面
;
(3)在侧棱
上是否存在一点
,使得三棱锥
的体积是
?若存在,求出
的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一条生产线上按同样的方式每隔30分钟取一件产品,共取了n件,测得其产品尺寸后,画得其频率分布直方图如图所示,已知尺寸在[15,45)内的频数为46. ![]()
(1)该抽样方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)内的产品的件数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
(
),
为
上一点,以
为边作等边三角形
,且
、
、
三点按逆时针方向排列.
(Ⅰ)当点
在
上运动时,求点
运动轨迹的直角坐标方程;
(Ⅱ)若曲线
:
,经过伸缩变换
得到曲线
,试判断点
的轨迹与曲线
是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
底面
,底面
是直角梯形,
,
,
,
是
的中点.
(1)求证:平面
平面
;
(2)若二面角
的余弦值为
,求直线
与平面
所成角的正弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com