精英家教网 > 高中数学 > 题目详情
(本题满分12分)
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,)、AB在椭圆E上,且+=m(mR).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.
(1);
(2)x+2y+2=0.
本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的运用。
(1)由=解得a2=4,b2=3,
椭圆方程为;再设出点A,B,利用点差法得到斜率。
(2)由(1)知,点Ax1,y1)、Bx2,y2)的坐标满足
P的坐标为(1,), m=-3,   于是x1+x2+1=3+m=0,y1+y2+=3++=0,
因此△PAB的重心坐标为(0,0).即原点是△PAB的重心.
,进而得到直线的方程。
解:(1)由=解得a2=4,b2=3,
椭圆方程为
Ax1,y1)、Bx2,y2),
x1+x2-2,y1+y2-3)=m(1,),即
,两式相减得
;
(2)由(1)知,点Ax1,y1)、Bx2,y2)的坐标满足
P的坐标为(1,), m=-3,   于是x1+x2+1=3+m=0,y1+y2+=3++=0,
因此△PAB的重心坐标为(0,0).即原点是△PAB的重心.
x1+x2=-1,y1+y2=-,∴AB中点坐标为(),
,两式相减得
;
∴直线AB的方程为y+=x+),即x+2y+2=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)
以椭圆的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足.
(Ⅰ)求椭圆及其“准圆”的方程;
(Ⅱ)若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线过双曲线右焦点,交双曲线于两点,
的最小值为2,则其离心率为(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为______________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C:上有一动点P,P到椭圆C的两焦点 F1,F2的距离之和等于2,△PF1F2的面积最大值为1
(I)求椭圆的方程
(II)若过点M(2,0)的直线l与椭圆C交于不同两点A、B,(O为坐标原点)且| ,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是椭圆上的在第一象限内的点,又是原点,则四边形的面积的最大值是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点,焦点在轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为(        )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆 的焦点为,点在椭圆上,如果线段的中点在轴上,那么的(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案