精英家教网 > 高中数学 > 题目详情
已知中心在原点,焦点在轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为(        )
A.B.
C.D.
D
设双曲线的方程为,∵,又焦点到渐近线的距离为b=1,∴,∴双曲线的方程为,故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆,a,b为常数),动圆。点分别为的左,右顶点,相交于A,B,C,D四点。
(1)求直线与直线交点M的轨迹方程;
(2)设动圆相交于四点,其中。若矩形与矩形的面积相等,证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,两焦点之间的距离为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右顶点作直线交抛物线于A、B两点,
(1)求证:OA⊥OB;
(2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,)、AB在椭圆E上,且+=m(mR).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点,曲线上的动点满足,直线与曲线交于另一点
(Ⅰ)求曲线的方程;
(Ⅱ)设,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分14分)
已知圆M定点,点为圆上的动点,点上,点上,且满足
(Ⅰ) 求点G的轨迹C的方程;
(Ⅱ) 过点(2,0)作直线l,与曲线C交于A,B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在△ABC中,B、C坐标分别为B (0,-4),C (0,4),且,顶点A
的轨迹方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△中,边长为边上的中线长之和等于.若以边中点为原点,边所在直线为轴建立直角坐标系,则△的重心的轨迹方程为:                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知AD分别为椭圆E的左顶点与上顶点,椭圆的离心率FF2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点AB,且OAOBO为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;
(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

同步练习册答案