精英家教网 > 高中数学 > 题目详情
设函数f(x)=,g(x)=ln(2ex)(其中e为自然对数的底数)
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函数h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)对一切x>0恒成立;若存在,求出一次函数的表达式,若不存在,说明理由:
3)数列{}中,a1=1,=g()(n≥2),求证:<1且
(1)最小值0;(2)见解析;(3)见解析.

试题分析:(1)利用导数求解即可;(2)假设存在,然后利用导数求出最小值判断即可;(3)先证递减且由(2)知,又上递增,所以当时,总有,即也成立,然后利用数学归纳法证明.
试题解析:(1)
易知
所以上递减,而在上递增                   2分
时,取最小值0                          3分
(2)由(1)可知,
所以若存在一次函数使得
总成立,则,即
所以可设,代入恒成立,
所以,所以
此时设,则
易知上递减,在上递增,
所以,即对一切恒成立;
综上,存在一次函数符合题目要求                          6分
(3)先证递减且
由(2)知,又上递增,所以当时,
总有,即也成立
下面用数学归纳法证明
(1)时,因为,所以成立;
(2)假设时,结论成立,即
由于时,,又上递增,
,即也成立
由(1)(2)知,恒成立;而
所以递减
综上所述                          9分
所以
                          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数在定义域内为增函数,求实数的取值范围;
(2)设,若函数存在两个零点,且实数满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)如果,求函数的单调递减区间;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数的两个极值点,其中
(1)求的取值范围;
(2)若,求的最大值.注:e是自然对数的底.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3) 证明:对任意的自然数n,有恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,记的大小关系是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案