精英家教网 > 高中数学 > 题目详情
(5分)(2011•天津)已知双曲线=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为(         )
A.2B.2C.4D.4
B

试题分析:根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.
解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),
即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,
则抛物线的焦点为(2,0);
则双曲线的左顶点为(﹣2,0),即a=2;
点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,
由双曲线的性质,可得b=1;
则c=,则焦距为2c=2
故选B.
点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知P是双曲线 的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是(     ).
A.双曲线的焦点到渐近线的距离为;
B.若,则e的最大值为;
C.△PF1F2的内切圆的圆心的横坐标为b ;
D.若∠F1PF2的外角平分线交x轴与M, 则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设双曲线经过点(2,2),且与具有相同渐近线,则的方程为         ;渐近线方程为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·陕西高考]双曲线=1的离心率为,则m等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的两个焦点为在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点M,若垂直于x轴,则双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出以下四个命题:
①为了解600名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑用系统抽样,则分段的间隔k为30;
②二项式的展开式中含项的系数是
③在某项测量中,测量结果服从正态分布N(2,)(>0).若在(,1)内取值的概率为0.15,则在(2,3)内取值的概率为0.7;
④若双曲线的渐近线方程为,则k=1.其中正确命题的序号是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线 的左、右焦点分别是垂直x轴的直线与双曲线C的两渐近线的交点分别是M、N,若为正三角形,则该双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知离心率为2的双曲线的右焦点与抛物线的焦点重合,
="____________" .

查看答案和解析>>

同步练习册答案