精英家教网 > 高中数学 > 题目详情

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.

现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

答案】(1)1 040 m;(2);(3)

【解析】(1)中,因为cos A=,cos C=,所以sin A=,sin C=

从而sin B=sin[π-(A+C)]=sin(A+C)=sin Acos C+cos Asin C=

由正弦定理,可得

所以索道AB的长为1 040 m.(3分)

(2)假设乙出发t 分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,

所以由余弦定理,得

因为,即0≤t≤8,所以当分钟时,甲、乙两游客距离最短.(6分)

(3)由正弦定理,得

乙从B出发时,甲已走了50×(2+8+1)=550(m),还需走710 m才能到达C.

设乙步行的速度为v m/min,由题意得,解得

所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在(单位:m/min)范围内.(10分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知a,b都是正数,求证:a5+b5≥a2b3+a3b2
(2)已知a>0,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)记函数的两个零点分别为,且.已知,若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣|x2﹣ax﹣2|,a为实数.
(1)当a=1时,求函数f(x)在[0,3]上的最小值和最大值;
(2)若函数f(x)在(﹣∞,﹣1)和(2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)若g(x)=kx﹣2k+5,对任意的m∈[1,4],总存在n∈[1,4],使得f(m)=g(n)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省数学学业水平考试成绩分为A、B、C、D四个等级,在学业水平成绩公布后,从该省某地区考生中随机抽取60名考生,统计他们的数学成绩,部分数据如下:

等级

A

B

C

D

频数

24

12

频率

0.1


(1)补充完成上述表格中的数据;
(2)现按上述四个等级,用分层抽样的方法从这60名考生中抽取10名,在这10名考生中,从成绩A等和B等的所有考生中随机抽取2名,求至少有一名成绩为A等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: (a>0,b>0)过点A(1,0),且离心率为
(1)求双曲线C的方程;
(2)已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣5x+6=0},B={x|mx﹣1=0},且A∩B=B,求由实数m所构成的集合M,并写出M的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知z为复数,ω=z+ 为实数,
(1)当﹣2<ω<10,求点Z的轨迹方程;
(2)当﹣4<ω<2时,若u= (α>0)为纯虚数,求:α的值和|u|的取值范围.

查看答案和解析>>

同步练习册答案