精英家教网 > 高中数学 > 题目详情

【题目】选修44:坐标系与参数方程

在直角坐标系中,直线的参数方程为(其中t为参数),在以原点O为极点,以轴为极轴的极坐标系中,曲线C的极坐标方程为

1)求直线的普通方程及曲线的直角坐标方程;

2)设是曲线上的一动点, 的中点为,求点到直线的最小值.

【答案】1 2

【解析】试题分析:(1)根据加减消元法将直线的参数方程化为普通方程,根据将曲线C的极坐标方程化为直角坐标方程;2先根据转移法求点的轨迹,再根据直线与圆位置关系求最小值.

试题解析:1)由的普通方程.  

又由,得,所以,曲线的直角坐标方程为

.               

2)设 ,则

由于P的中点,则,所以

得点的轨迹方程为,轨迹为以为圆心,1为半径的圆.

圆心到直线的距离

所以点到直线的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,关于的方程,给出下列四个命题,其中假命题的个数是(

①存在实数,使得方程恰有个不同的实根;

②存在实数,使得方程恰有个不同的实根;

③存在实数,使得方程恰有个不同的实根;

④存在实数,使得方程恰有个不同的实根.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在办公大厅建一面长为米的玻璃幕墙.先等距安装根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为米的玻璃造价为元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为元(总造价=立柱造价+玻璃造价).

(1)求关于的函数关系式;

(2)当时,怎样设计能使总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示

1)求的解析式;

2)求的单调增区间,并指出的最大值及取到最大值时的集合;

3)把的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,已知.

(1)求角

(2)求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱 平面 中点.

1)求证:

2)若 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:

(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;

(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,抛物线的焦点为,点是抛物线上到直线距离最小的点.

(1)求点的坐标;

(2)若直线与抛物线交于两点,中点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

同步练习册答案