分析 (Ⅰ)由题意知$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{S=\frac{1}{2}ab=\frac{3\sqrt{6}}{2}\\;}\end{array}\right.$,从而解得;
(Ⅱ)设M(x,y),D(xD,yD),E(xE,yE),F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0);从而可得$\left\{\begin{array}{l}{{x}_{D}=-\frac{\sqrt{3}}{λ}-\frac{x}{λ}-\sqrt{3}}\\{{y}_{D}=-\frac{y}{λ}}\end{array}\right.$,代入椭圆方程化简得($\sqrt{3}$+x+λ$\sqrt{3}$)2+9-x2-9λ2=0,从而求得λ=$\frac{6+\sqrt{3}x}{3}$,同理可得μ=$\frac{6-\sqrt{3}x}{3}$,从而解得.
解答
解:(Ⅰ)由题意知,
$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{S=\frac{1}{2}ab=\frac{3\sqrt{6}}{2}\\;}\end{array}\right.$,
解得,a=3,b=$\sqrt{6}$,c=$\sqrt{3}$;
故椭圆C的方程为$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{6}$=1;
(Ⅱ)设M(x,y),D(xD,yD),E(xE,yE),F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0);
∵$\overrightarrow{M{F}_{1}}$=λ$\overrightarrow{{F}_{1}D}$,
∴(-$\sqrt{3}$-x,-y)=λ($\sqrt{3}$+xD,yD),
∴$\left\{\begin{array}{l}{{x}_{D}=-\frac{\sqrt{3}}{λ}-\frac{x}{λ}-\sqrt{3}}\\{{y}_{D}=-\frac{y}{λ}}\end{array}\right.$,
又∵$\frac{{{x}_{D}}^{2}}{9}$+$\frac{{{y}_{D}}^{2}}{6}$=1,$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{6}$=1,
∴($\sqrt{3}$+x+λ$\sqrt{3}$)2+9-x2-9λ2=0,
∴(3λ-(6+$\sqrt{3}$x))(λ+1)=0,
∴λ=$\frac{6+\sqrt{3}x}{3}$,
又∵$\overrightarrow{M{F}_{2}}$=μ$\overrightarrow{{F}_{2}E}$,
∴同理可得,μ=$\frac{6-\sqrt{3}x}{3}$
∴λ+μ=$\frac{6+\sqrt{3}x}{3}$+$\frac{6-\sqrt{3}x}{3}$=4.
点评 本题考查了椭圆与直线的位置关系的应用及椭圆的标准方程的求法,同时考查了数形结合的思想应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\frac{{{x^2}-1}}{x-1}与y=x+1$ | B. | $y=lgx与y=\frac{1}{2}lg{x^2}$ | ||
| C. | y=lg(x2-1)与y=lg(x+1)+lg(x-1) | D. | y=x与y=${log}_{a}{a}^{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,5} | B. | {2,5} | C. | {2,5,7} | D. | {1,2,5,7} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com