精英家教网 > 高中数学 > 题目详情
16.某射击选手每次射击击中目标的概率是0.8,如果他连续射击4次,则这名射手恰有3次击中目标的概率是(  )
A.C${\;}_{4}^{3}$0.83×0.2B.C${\;}_{4}^{3}$0.83C.0.83×0.2D.C${\;}_{4}^{3}$0.8×0.2

分析 由已知条件利用n次独立重复试验中事件A恰好发生k次的概率计算公式求解.

解答 解:∵某射击选手每次射击击中目标的概率是0.8,
他连续射击4次,
∴这名射手恰有3次击中目标的概率是:
p=${C}_{4}^{3}0.{8}^{3}×0.2$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3-x-$\sqrt{x}$,g(x)=$\frac{a{x}^{2}+ax}{f(x)+\sqrt{x}}$+lnx
(1)求函数y=f(x)的零点个数;
(2)若函数y=g(x)在(0,$\frac{1}{e}$)内有极值,求实数a的取值范围;
(3)对任意的t∈(1,+∞),s∈(0,1),求证:g(t)-g(s)>e+2-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场每天以每件100元的价格购入A商品若干件,并以每件200元的价格出售,若所购进的A商品前8小时没有售完,则商场对没卖出的A商品以每件60元的低价当天处理完毕(假定A商品当天能够处理完).该商场统计了100天A商品在每天的前8小时的销售量,制成如表格.
前8小时的销售量t(单位:件)567
频    数 40 3525
¬(Ⅰ)若某天该商场共购入7件A商品,在前8个小时售出5件. 若这些产品被7名不同的顾客购买,现从这7名顾客中随机选3人进行回访,记X表示这3人中以每件200元的价格购买的人数,求X的分布列;
(Ⅱ)将频率视为概率,要使商场每天购进A商品时所获得的平均利润最大,则每天应购进几件A商品,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.幂函数y=f(x)经过点(5,$\sqrt{5}$),则f(x)是(  )
A.偶函数,且在(0,+∞)上是增函数
B.偶函数,且在(0,+∞)上是减函数
C.奇函数,且在(0,+∞)是减函数
D.非奇非偶函数,且在(0,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f'(x)是函数f(x)的导函数,f''(x)是函数f'(x)的导函数.对于三次函数y=f(x),若方程f''(x0)=0,则点($\begin{array}{l}{{x_0},f({x_0})}\end{array}$)即为函数y=f(x)图象的对称中心.设函数f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,则f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=(  )
A.1008B.2014C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)是定义在R上的减函数,其导函数为f′(x),且满足$\frac{f(x)}{f′(x)}$+x<2016.下面不等式正确的是 (  )
A.f(x)>0B.f(x)<0C.2f(2018)>f(2017)D.2f(2018)≤f(2017)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若sin(π-α)-cos(π+α)=$\frac{1}{5}$,则sin($\frac{3π}{2}$-α)cos($\frac{π}{2}$+α)等于(  )
A.$\frac{12}{25}$B.-$\frac{12}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆C:(x+2)2+y2=r2与抛物线D:y2=20x的准线交于A,B两点,且|AB|=8,则圆C的面积是(  )
A.B.C.16πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α、β∈(0,π),sin(α+β)=$\frac{5}{13}$,tan$\frac{α}{2}$=$\frac{1}{2}$,则tanα=$\frac{4}{3}$,tanβ=-$\frac{63}{16}$.

查看答案和解析>>

同步练习册答案