分析 由f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,得到f(x)+f($\frac{1}{x}$)=0,由此能求出f(3)+f(4)+…+f(2013)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2013}$)的值.
解答 解:∵f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}-1}{{x}^{2}+1}+\frac{\frac{1}{{x}^{2}}-1}{\frac{1}{{x}^{2}}+1}$=$\frac{{x}^{2}-1}{{x}^{2}+1}+\frac{1-{x}^{2}}{{x}^{2}+1}$=0,
∴f(3)+f(4)+…+f(2013)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2013}$)
=[f(3)+f($\frac{1}{3}$)]+[f(4)+f($\frac{1}{4}$)]+…+[f(2013)+f($\frac{1}{2013}$)]
=0.
故答案为:0.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,解题的关键是推导出f(x)+f($\frac{1}{x}$)=0.
科目:高中数学 来源: 题型:选择题
| A. | {a|0≤a≤6} | B. | {a|a≤2,或a≥4} | C. | {a|a≤0,或a≥6} | D. | {a|2≤a≤4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 人数 | 管理 | 技术开发 | 营销 | 生产 | 共计 |
| 老年 | 40 | 40 | 40 | 80 | 200 |
| 中年 | 80 | 120 | 160 | 240 | 600 |
| 青年 | 40 | 160 | 280 | 720 | 1 200 |
| 小计 | 160 | 320 | 480 | 1 040 | 2 000 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com