精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求异面直线PD和EC所成角.
分析:(1)取PC的中点G,连接FG、EG,证出AF∥EG,由线面平行的判定定理,即可证出:AF∥平面PCE.
(2)取CD的中点N,得到∠ANM即为异面直线所成角,由长度关系得到cos∠ANM=
5
5
即异面直线PD和EC所成角为arccos
5
5
解答:证明:(1)取PC的中点G,连接FG、EG,
∴FG为△CDP的中位线∴FG
.
CD
∵四边形ABCD为矩形,E为AB的中点
∴AB
.
CD,∴FG
=AE,
∴四边形AEGF是平行四边形,∴AF∥EG
又EG?平面PCE,AF?平面PCE
∴AF∥平面PCE;
(2)取CD的中点N,连接MN,AN,AM,
∴MN∥PD,MN=
1
2
PD
,AN∥EC
∴∠ANM即为异面直线所成角,
∵PA=2,PA⊥面ABCD,∠PDA=45°,
AB=2,AN=
5
,MN=
2
,AM=
1
2
PC=
3

cos∠ANM=
5
5
,即异面直线PD和EC所成角为arccos
5
5
点评:本题考查线面位置关系,面面位置关系的判定,空间角的求解.考查空间想象能力,转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案