精英家教网 > 高中数学 > 题目详情
3.已知圆C1:(x-1)2+y2=2和圆C2:(x-3)2+(y-2)2=r2恰好有3条公切线,则圆C2的周长为(  )
A.πB.$\sqrt{2}$πC.2$\sqrt{2}$πD.

分析 根据圆C1与圆C2恰好有3条公切线,得出两圆外切,从而求出圆C2的半径,即可求出周长.

解答 解:圆C1:(x-1)2+y2=2和圆C2:(x-3)2+(y-2)2=r2恰好有3条公切线,
∴圆C1与圆C2外切,
∴两圆的圆心距为d=R+r
∴$\sqrt{{(1-3)}^{2}{+(0-2)}^{2}}$=$\sqrt{2}$+r
∴r=$\sqrt{2}$,
∴圆C2的周长为2πr=2$\sqrt{2}$π.
故答案为:C.

点评 本题考查了两圆的位置关系的应用问题,也考查了求圆周长的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图,曲边梯形ABCD由直线x=1,x=e,x轴及曲线y=$\frac{3}{x}$围成,则这个曲边梯形的面积是3.(注:e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知平面向量$\overrightarrow{a}$=(2,4),$\overrightarrow b=({1,-2})$,若$\overrightarrow c=\overrightarrow a-({\overrightarrow a•\overrightarrow b})\overrightarrow b$,则|$\overrightarrow{c}$|=8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则有${b_1}•{b_2}•…•{b_n}={b_1}•{b_2}•…•{b_{17-n}}(n<17,n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,O是矩形A1A2A3A4的中心,B1,B2,C1,C2分别是矩形四条边的中点,A1A2=4,A2A3=2$\sqrt{3}$,若以B1B2所在直线为x轴,O为坐标原点建立平面直角坐标系,记以O为对称中心,同时经过点C2,B2的椭圆为W.
(1)求椭圆为W的标准方程;
(2)若$\overrightarrow{OD}$=$\frac{1}{3}$$\overrightarrow{O{B}_{2}}$,$\overrightarrow{{A}_{3}N}$=$\frac{1}{3}$$\overrightarrow{{A}_{3}{B}_{2}}$,C1D∩C2N=M,n∈N*,证明:点M在椭圆W上;
(3)已知过定点G(4,0)的直线l与曲线W相交于Q,R两点,点Q关于x轴的对称点为Q1,直线Q1R交x轴于点T,试问△TRQ的面积是否存在最大值;若存在,求出这个最大值和对应直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z=(a-2)+ai(a∈R,i为虚数单位)为纯虚数,则${∫}_{0}^{a}$$\sqrt{4-{x}^{2}}$dx的值为(  )
A.πB.$\frac{π}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}的前n项和为Sn,若a1,a2,S3成等比数列,则$\frac{{S}_{n}}{n{a}_{n}}$等于(  )
A.$\frac{n}{2n-1}$B.$\frac{n}{2n+1}$C.$\frac{2n-1}{n}$D.$\frac{2n+1}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若P为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1上任意一点,EF为圆(x-1)2+y2=4的任意一条直径,则$\overrightarrow{PE}$•$\overrightarrow{PF}$的取值范围是[5,21].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=sin 17°cos45°+cos17°sin45°,b=1-2sin213°,c=$\frac{\sqrt{3}}{2}$,则有(  )
A.c<a<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

同步练习册答案