精英家教网 > 高中数学 > 题目详情
18.已知平面向量$\overrightarrow{a}$=(2,4),$\overrightarrow b=({1,-2})$,若$\overrightarrow c=\overrightarrow a-({\overrightarrow a•\overrightarrow b})\overrightarrow b$,则|$\overrightarrow{c}$|=8$\sqrt{2}$.

分析 由已知求出$\overrightarrow{c}$的坐标,然后进行模的计算.

解答 解:$\overrightarrow a•\overrightarrow b=2-8=-6$,
∴$({\overrightarrow a•\overrightarrow b})•\overrightarrow b=({-6,12})$,
∴$\overrightarrow c=\overrightarrow a-({-6,12})=({8,-8})$,
∴$|{\overrightarrow c}|=\sqrt{{8^2}+{{({-8})}^2}}=8\sqrt{2}$
故答案为:8$\sqrt{2}$.

点评 本题考查了平面向量的坐标运算以及向量模的求法;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{{e}^{x}}{x}$,g(x)=x+$\frac{1}{x}$,h(x)=[f(x)-a][g(x)+a],给出下列四个命题:
①?x∈(0,+∞),f(x)>g(x)恒成立;
②?x∈(-∞,0),使得f(x)<g(x)成立;
③当-2<a<0或a=2时,h(x)有且只有一个零点;
④若h(x)有且只有三个零点,则a<-2或a=e,
其中真命题为①③④.(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三位男生和一位女生并排照相,若女生不排在两端,则不同的排法共有(  )
A.6种B.12种C.18种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题p1:△ABC所在平面内一点G满足$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$,则G是△ABC的重心;命题p2:已知a为实数,则a>1是$\frac{1}{a}$<1的必要不充分条件,则下列命题为真命题的是(  )
A.p1∧p2B.¬p1∧p2C.¬p1∨p2D.p1∨p2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,若输入x的值为2+log23,则输出y的值为(  )
A.$\frac{8}{3}$B.8C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等差数列{an}的前n项和Sn=n2+n+r,则r=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了让学生了解环保,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]
合计
(1)填充频率分布表中的空格;
(2)不具体计算频率/组距,补全频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C1:(x-1)2+y2=2和圆C2:(x-3)2+(y-2)2=r2恰好有3条公切线,则圆C2的周长为(  )
A.πB.$\sqrt{2}$πC.2$\sqrt{2}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设⊙E与⊙F相离,过E向⊙F作切线交⊙E于A、B,过F向⊙E作切线交⊙F于C、D,求证:AB=CD.

查看答案和解析>>

同步练习册答案