精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(m,8),若$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则实数m的值是2$\sqrt{11±\sqrt{119}}$.

分析 $\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,可得2m+8m=$\sqrt{4+{m}^{2}}$$\sqrt{{m}^{2}+8}$,解出即可.

解答 解:∵$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,
∴2m+8m=$\sqrt{4+{m}^{2}}$$\sqrt{{m}^{2}+8}$,
化为:m4-88m2+32=0,m≥0.
解得m2=44±$4\sqrt{119}$,
解得m=2$\sqrt{11±\sqrt{119}}$.
故答案为:2$\sqrt{11±\sqrt{119}}$.

点评 本题考查了向量的数量积运算性质、根式的性质、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);
(2)已知f(x)=ax2+bx+c,若f(0)=0,f(x+1)=f(x)+x+1,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知函数f(x)的定义域是[1,5],求函歌f(x2+1)的定义域;
(2)已知函数f(2x-1)的定义域是[1,5],求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=f(x)的图象与函数y=2x的图象关于直线y=x对称,则f(x)=(  )
A.2xB.log2x(x>0)C.2xD.lg(2x)(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-(x-1)^{2}},(0≤x<2)}\\{f(x-2),(x≥2)}\end{array}\right.$,若函数F(x)=f(x)-kx(k>0),有且仅有四个零点,则实数k的取值范围为(  )
A.($\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$)B.($\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{6}}{12},\frac{\sqrt{2}}{4}$)D.($\frac{\sqrt{3}}{13},\frac{\sqrt{6}}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列数列的前n项和:
1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若a2+1=2b2,a、b∈R,求函数y=|a-2b|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,值域为(0,+∞)的是(  )
A.y=x2-x+1B.($\frac{1}{3}$)1-xC.3${\;}^{\frac{1}{2-x}}$+1D.y=|log2x2|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}和等比数列{bn}中,a1=0,a4=3,bn=2${\;}^{{a}_{n}+1}$(n∈N*).
(Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)若cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案