精英家教网 > 高中数学 > 题目详情
16.求下列数列的前n项和:
1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…

分析 通过观察可知通项公式an=(2n-1)+$\frac{1}{{2}^{n}}$,进而利用等差、等比数列的求和公式计算即得结论.

解答 解:依题意,an=(2n-1)+$\frac{1}{{2}^{n}}$,
∴其前n项和Sn=[1+3+…+(2n-1)]+($\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$)
=$\frac{n[1+(2n-1)]}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$
=n2+1-$\frac{1}{{2}^{n}}$.

点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在R上奇函数,且当x>0时.f(x)=-ax+a2-1 若f(x)在R上是减函数,关于a描述正确的是(  )
A.a=$\sqrt{2}$B.1<a≤$\sqrt{2}$C.a≥$\sqrt{2}$D.a∈(0,1)∪(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f(x)=f(2-x),其图象经过点(2,0),且对任意x${\;}_{{1}_{\;}}$,x2∈(1,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0恒成立,则不等式(x-1)f(x)≥0的解集为(  )
A.(-∞,1]B.[1,+∞)C.(-∞,0]∪[1,2]D.[0,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),R1,R2是它实轴的两个端点,Q是其虚轴的一个端点,已知渐近线的方向向量是(1,$\sqrt{3}$)与(1,-$\sqrt{3}$),△QR1R2的面积是$\sqrt{3}$,O是坐标原点,直线y=kx+m与双曲线C交于A,B两点,且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$.
(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程;
(3)求证:原点O到直线AB的距离是定值,并求弦|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(m,8),若$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则实数m的值是2$\sqrt{11±\sqrt{119}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求f(x)=sinxcosx+sinx-cosx的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\frac{1}{{2}^{x}-2}$的值域是(-∞,$-\frac{1}{2}$)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求极限:$\underset{lim}{x→0}$$\frac{cosx-{e}^{-\frac{{x}^{2}}{2}}}{{x}^{2}[x+ln(1-x)]}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{4+x,x≤0}\\{{x}^{2},x>0}\end{array}\right.$,若f[f(a)]>f[f(a)+1],则实数a的取值范围为(  )
A.(-1,0]B.[-1,0]C.(-5,-4]D.[-5,-4]

查看答案和解析>>

同步练习册答案