精英家教网 > 高中数学 > 题目详情
2.已知f(x)是定义在R上奇函数,且当x>0时.f(x)=-ax+a2-1 若f(x)在R上是减函数,关于a描述正确的是(  )
A.a=$\sqrt{2}$B.1<a≤$\sqrt{2}$C.a≥$\sqrt{2}$D.a∈(0,1)∪(1,$\sqrt{2}$)

分析 由f(x)是定义在R上的奇函数,得f(0)=0,由当x>0时,f(x)=-ax+a2-1,f(x)在R上是减函数,可得a>1且-a0+a2-1≤0,由此可解出a的范围.

解答 解:因为f(x)是R上的奇函数,所以有f(-x)=-f(x),则f(-0)=-f(0),即f(0)=0.
由x>0时,f(x)=-ax+a2-1,f(x)在R上是减函数,可得a>1且-a0+a2-1≤0,所以1<a≤$\sqrt{2}$.
故选B.

点评 本题考查函数的奇偶性、单调性,准确理解它们的概念是解决问题的基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.用定义法讨论函数f(x)=x+$\frac{4}{x}$在定义域上的单调性,并画出图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥面BDE;平面PAC⊥平面BDE;
(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设m、a∈R,f(x)=x2+(a-1)x+1,g(x)=mx2+2ax+$\frac{m}{4}$.若命题“对一切实数f(x)>0”成立时,命题“对一切实数x,g(x)>0”也成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);
(2)已知f(x)=ax2+bx+c,若f(0)=0,f(x+1)=f(x)+x+1,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四组函数中,表示同一函数的是(  )
A.y=x-1与y=$\sqrt{(x-1)^{2}}$B.y=$\sqrt{x-1}$与y=$\frac{x-1}{\sqrt{x-1}}$
C.y=$\sqrt{x-1}$•$\sqrt{x+1}$与y=$\sqrt{(x+1)(x-1)}$D.y=$\frac{x}{x}$与y=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤1}\\{2x+3,x>1}\end{array}\right.$
(1)求f(3x-1);
(2)若f(3a-1)=$\frac{3}{2}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=f(x)在R上单调递增,且f(m)>f(1-m),则实数m的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列数列的前n项和:
1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…

查看答案和解析>>

同步练习册答案