精英家教网 > 高中数学 > 题目详情
11.函数y=f(x)在R上单调递增,且f(m)>f(1-m),则实数m的取值范围是($\frac{1}{2}$,+∞).

分析 由条件利用函数的单调性的性质可得 m>1-m,由此求得实数m的取值范围.

解答 解:∵函数y=f(x)在R上单调递增,且f(m)>f(1-m),∴m>1-m,
求得m>$\frac{1}{2}$,
故答案为:($\frac{1}{2}$,+∞).

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=ax2+x-2在区间(-∞,-2)上是减函数,则f(1)的取值范围是[$-\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在R上奇函数,且当x>0时.f(x)=-ax+a2-1 若f(x)在R上是减函数,关于a描述正确的是(  )
A.a=$\sqrt{2}$B.1<a≤$\sqrt{2}$C.a≥$\sqrt{2}$D.a∈(0,1)∪(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知M={x|(x-a)2<1},N={x|x2-5x-24<0},若M是N的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={y|y=x2},B={y|y=x+2},则A∩B=[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{x-5\\;(x≥6)}\\{f(x+2)\\;(x<6)}\end{array}\right.$,则f(-3)为 (  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f(x)=f(2-x),其图象经过点(2,0),且对任意x${\;}_{{1}_{\;}}$,x2∈(1,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0恒成立,则不等式(x-1)f(x)≥0的解集为(  )
A.(-∞,1]B.[1,+∞)C.(-∞,0]∪[1,2]D.[0,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),R1,R2是它实轴的两个端点,Q是其虚轴的一个端点,已知渐近线的方向向量是(1,$\sqrt{3}$)与(1,-$\sqrt{3}$),△QR1R2的面积是$\sqrt{3}$,O是坐标原点,直线y=kx+m与双曲线C交于A,B两点,且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$.
(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程;
(3)求证:原点O到直线AB的距离是定值,并求弦|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求极限:$\underset{lim}{x→0}$$\frac{cosx-{e}^{-\frac{{x}^{2}}{2}}}{{x}^{2}[x+ln(1-x)]}$.

查看答案和解析>>

同步练习册答案