分析 (1)依题意,S1,$\frac{{S}_{2}}{2}$,$\frac{{S}_{3}}{3}$成等差数列⇒$\frac{{S}_{2}}{2}$-$\frac{{S}_{1}}{1}$=$\frac{{S}_{3}}{3}$-$\frac{{S}_{2}}{2}$,即$\frac{1+c}{1+1}$=$\frac{2+c}{2+1}$,于是可求c的值;
(2)由c=1得:$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1,可知数列{$\frac{{S}_{n}}{n}$}是以1为首项,1为公差的等差数列,于是可求得Sn=n2,继而可求得数列{an}的通项公式.
解答 解:(1)∵a1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=$\frac{n+c}{n+1}$(c∈R,n=1,2,3,…),且S1,$\frac{{S}_{2}}{2}$,$\frac{{S}_{3}}{3}$成等差数列,
∴$\frac{{S}_{2}}{2}$-$\frac{{S}_{1}}{1}$=$\frac{{S}_{3}}{3}$-$\frac{{S}_{2}}{2}$,即$\frac{1+c}{1+1}$=$\frac{2+c}{2+1}$,
解得:c=1;
(2)由c=1得:$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1,又$\frac{{S}_{1}}{1}$=1,
∴数列{$\frac{{S}_{n}}{n}$}是以1为首项,1为公差的等差数列,
∴$\frac{{S}_{n}}{n}$=1+(n-1)×1=n,
∴Sn=n2.
∴当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,a1=1符合上式,
∴数列{an}的通项公式为:an=2n-1.
点评 本题考查数列递推式的应用,求得c=1与Sn=n2是解决问题的关键,考查等差数列性质的运用于等差关系的判定及通项公式的求法,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ①② | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com