精英家教网 > 高中数学 > 题目详情
18.若复数z=$\frac{a+i}{i}$,且z∈R,则实a=(  )
A.1B.-1C.0D.2

分析 利用复数的运算法则、复数相等、复数为实数的充要条件即可得出.

解答 解:复数z=$\frac{a+i}{i}$=$\frac{-i(a+i)}{-i•i}$=-ai+1,且z∈R,则实a=0.
故选:C.

点评 本题考查了复数的运算法则、复数相等、复数为实数的充要条件,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,在以BC为直径的半圆上任意取一点P,过$\widehat{BP}$的中点A作AD⊥BC于D,连接BP交AD于E,交AC于F,则EF:BE等于(  )
A.1:2B.1:1C.2:1D.2:3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为$ρ=4\sqrt{2}sin(\frac{3π}{4}-θ)$
(1)将圆C的极坐标方程化为直角坐标方程;
(2)过点P(0,2)作斜率为$\sqrt{3}$直线l与圆C交于A,B两点,试求$|{\frac{1}{|PA|}-\frac{1}{|PB|}}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.经过点P(4,1)的直线l交双曲线$\frac{x^2}{12}-\frac{y^2}{4}$=1于M、N两点,若点P恰为线段MN中点,则直线l的方程为4x-3y-13=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,a1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=$\frac{n+c}{n+1}$(c∈R,n=1,2,3,…),且S1,$\frac{{S}_{2}}{2}$,$\frac{{S}_{3}}{3}$成等差数列.
(1)求c的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.记max{a,b}为a、b中较大者,函数f(x)=x2+px+q的图象与x轴交于两点A(x1,0)、B(x2,0),且x1<x2,若存在整数n,使n<x1<x2<n+1,则(  )
A.max{f(n),f(n+1)}>1B.max{f(n),f(n+1)}<1C.max{f(n),f(n+1)}>$\frac{1}{2}$D.max{f(n),f(n+1)}<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(2,t),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数t的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=∅,则a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=1+$\sqrt{4-{x^2}}$与直线y=k(x-2)+4有两个不同交点的充要条件是$\frac{5}{12}<k≤\frac{3}{4}$.

查看答案和解析>>

同步练习册答案