精英家教网 > 高中数学 > 题目详情

【题目】如图所示,抛物线y=1﹣x2与x轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在x轴上.已知工业用地每单位面积价值为3a元(a>0),其它的三个边角地块每单位面积价值a元.

(1)求等待开垦土地的面积;
(2)如何确定点C的位置,才能使得整块土地总价值最大.

【答案】
(1)解:由

故等待开垦土地的面积为


(2)解:设点C的坐标为(x,0),则点B(x,1﹣x2)其中0<x<1,

∴土地总价值

=

由y′=4a(1﹣3x2)=0得

并且当 时,

故当 时,y取得最大值.

答:当点C的坐标为 时,整个地块的总价值最大.


【解析】(1)先由定积分可求等待开垦土地的面积;(2)进而可得工业用地面积,三个边角地块面积,由此可得土地总价值,利用导数的方法可求函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设椭圆)的左、右焦点分别为,点在椭圆上, 的面积为.

(Ⅰ)求该椭圆的标准方程;

(Ⅱ)是否存在圆心在轴上的圆,使圆在轴的上方与椭圆

有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:|1﹣ |≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(x≥0)的图象经过点(2, ),其中a>0且a≠1.
(1)求a的值;
(2)求函数y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈[ ],都有f(x)﹣2mx≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(其中a实数,e是自然对数的底数).
(1)当a=5时,求函数y=g(x)在点(1,e)处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值;
(3)若存在x1 , x2∈[e1 , e](x1≠x2),使方程g(x)=2exf(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数定义在上,其导函数为,当时, ,则不等式的解集为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|1<x<4},B={x|x≤3m﹣4或x≥8+m}(m<6)
(1)若m=2,求A∩(UB)
(2)若A∩(UB)=,求实数m的取值范围.

查看答案和解析>>

同步练习册答案