精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和Sn= ,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= +(﹣1)nan , 求数列{bn}的前2n项和.

【答案】解:(Ⅰ)当n=1时,a1=s1=1,当n≥2时,an=sn﹣sn1= =n,
∴数列{an}的通项公式是an=n.
(Ⅱ)由(Ⅰ)知,bn=2n+(﹣1)nn,记数列{bn}的前2n项和为T2n , 则
T2n=(21+22+…+22n)+(﹣1+2﹣3+4﹣…+2n)
= +n=22n+1+n﹣2.
∴数列{bn}的前2n项和为22n+1+n﹣2
【解析】(Ⅰ)利用公式法即可求得;(Ⅱ)利用数列分组求和即可得出结论.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为偶函数
(1)求实数a的值;
系;
(2)记集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判断λ与E的
(3)当x∈[ ](m>0,n>0)时,若函数f(x)的值域[2﹣3m,2﹣3n],求实数m,n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人的体重是人的身体素质的重要指标之一.某校抽取了高二的部分学生,测出他们的体重(公斤),体重在40公斤至65公斤之间,按体重进行如下分组:第1[40,45),第2[45,50),第3[50,55),第4[55,60),第5[60,65],并制成如图所示的频率分布直方图,已知第1组与第3组的频率之比为1:3,第3组的频数为90.

(Ⅰ)求该校抽取的学生总数以及第2组的频率;

(Ⅱ)学校为进一步了解学生的身体素质,在第1组、第2组、第3组中用分层抽样的方法抽取6人进行测试.若从这6人中随机选取2人去共同完成某项任务,求这2人来自于同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式a|x|>x2 对任意x∈[﹣1,1]都成立,则实数a的取值范围是(
A.( ,1)∪(1,+∞)
B.(0, )∪(1,+∞)??
C.( ,1)∪(1,2)
D.(0, )∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则满足不等式 的实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△PAD与正方形ABCD共用一边AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,点E是棱PA的中点.

(1)求证:PC∥平面BDE;
(2)若直线PA与平面ABCD所成角为60°,求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ,求tanx的值;
(2)若 ,又x∈[π,2π],求sinx+cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(﹣ +lg ﹣lg2.

查看答案和解析>>

同步练习册答案