精英家教网 > 高中数学 > 题目详情

【题目】若不等式a|x|>x2 对任意x∈[﹣1,1]都成立,则实数a的取值范围是(
A.( ,1)∪(1,+∞)
B.(0, )∪(1,+∞)??
C.( ,1)∪(1,2)
D.(0, )∪(1,2)

【答案】A
【解析】解:设f(x)=a|x| , g(x)=x2
当x∈[﹣1,1]时,g(x)∈[﹣ ],
∵f(x)和g(x)都是偶函数,
∴只要保证当x∈[0,1]时,不等式a|x|>x2 恒成立即可.
当x∈[0,1]时,f(x)=ax
若a>1时,f(x)=ax≥1,此时不等式a|x|>x2 恒成立,满足条件.
若0<a<1时,f(x)=ax为减函数,而g(x)为增函数,
此时要使不等式a|x|>x2 恒成立,则只需要f(1)>g(1)即可,
即a>1﹣ =
此时 <a<1,
综上 <a<1或a>1,
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中, 是角A、B、C成等差数列的(
A.充分非必要条件
B.充要条件
C.充分不必要条件
D.必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直线2x﹣y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x﹣4y=0相切,则实数λ的值为(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算题。
(1)已知等比数列{an}中,a1=﹣1,a4=64,求q与S4
(2)已知等差数列{an}中,a1= ,d=﹣ ,Sn=﹣15,求n及an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3 an(n∈N*),数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn= ,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= +(﹣1)nan , 求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场拟对某商品进行促销,现有两种方案供选择,每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,预计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4,第二个月的销量是第一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令表示实施方案的第二个月的销量是促销前销量的倍数.

(Ⅰ)求 的分布列;

(Ⅱ)不管实施哪种方案, 与第二个月的利润之间的关系如下表,试比较哪种方案第二个月的利润更大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中, , 分别为的中点,对于常数,在梯形的四条边上恰好有8个不同的点,使得成立,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案