【题目】化简下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(﹣ ) +lg ﹣lg2.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn= ,n∈N* .
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= +(﹣1)nan , 求数列{bn}的前2n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1 , 这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,梯形中, , , , , 和分别为与的中点,对于常数,在梯形的四条边上恰好有8个不同的点,使得成立,则实数的取值范围是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,C是圆O上不同于A,B的一点,PA⊥平面ABC,E是PC的中点, ,PA=AC=1.
(1)求证:AE⊥PB;
(2)求二面角A﹣PB﹣C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图⑴、⑵、⑶、⑷为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为
A.三棱台、三棱柱、圆锥、圆台
B.三棱台、三棱锥、圆锥、圆台
C.三棱柱、正四棱锥、圆锥、圆台
D.三棱柱、三棱台、圆锥、圆台
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设Sn是数列{an}的前n项和,已知a1=2,an+1=Sn+2.
(1)求数列{an}的通项公式.
(2)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 | 82 | 81 | 79 | 78 | 95 | 88 | 93 | 84 |
乙 | 92 | 95 | 80 | 75 | 83 | 80 | 90 | 85 |
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com