【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 | 82 | 81 | 79 | 78 | 95 | 88 | 93 | 84 |
乙 | 92 | 95 | 80 | 75 | 83 | 80 | 90 | 85 |
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
【答案】
(1)解:茎叶图如下:
![]()
(2)解:派甲参加比较合适,理由如下:
![]()
(90﹣85)2+(92﹣85)2+(95﹣85)2]=41
∵
=
,
,
∴甲的成绩较稳定,派甲参赛比较合适
【解析】(1)将成绩的十位数作为茎,个位数作为叶,可得茎叶图;(2)计算甲与乙的平均数与方差,即可求得结论.
【考点精析】认真审题,首先需要了解茎叶图(茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少),还要掌握平均数、中位数、众数(⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2
sinxcosx+1﹣2sin2x,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的
,把所得到的图象再向左平移
单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间
上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(x+
)cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),五边形
中,
.如图(2),将
沿
折到
的位置,得到四棱锥
.点
为线段
的中点,且
平面
.
![]()
(1)求证:平面
平面
;
(2)若直线
与
所成角的正切值为
,设
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
:
的离心率为
,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过原点的直线与椭圆
交于
,
两点(
,
不是椭圆
的顶点),点
在椭圆
上,且
.直线
与
轴、
轴分别交于
两点.设直线
的斜率分别为
,证明存在常数
使得
,并求出
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,其中
=(2cosx,﹣
sin2x),
=(cosx,1),x∈R
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a=
,且向量
=(3,sinB)与向量
=(2,sinC)共线,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 . ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com