精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)与向量 =(2,sinC)共线,求△ABC的面积.

【答案】解:(Ⅰ) =

解得:
∴函数y=f(x)的单调递减区间为
(Ⅱ)∵f(A)=﹣1,
,即


又∵0<A<π,∴

∴由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7
∵向量 共线,
∴2sinB=3sinC.
由正弦定理得2b=3c
由①②得b=3,c=2.

【解析】(Ⅰ)根据题意,求出f(x)的解析式,利用三角函数的图象与性质求出f(x)的单调递减区间;(Ⅱ)由f(A)=﹣1得到A的值,由a= ,结合余弦定理得①,由向量 =(3,sinB)与向量 =(2,sinC)共线,结合正弦定理得②,联立①②得b,c的值,再由三角形的面积公式计算得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,已知a1=2,an+1=Sn+2.
(1)求数列{an}的通项公式.
(2)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

82

81

79

78

95

88

93

84

92

95

80

75

83

80

90

85


(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足a3=5,a10=﹣9.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是一个公差不为零的等差数列,其前n项和为Sn , 已知S9=90,且a1 , a2 , a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于 ,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:
(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在任意三角形ABC内任取一点Q,使SABQ SABC的概率为

查看答案和解析>>

同步练习册答案